FREE BOOKS

Author's List




PREV.   NEXT  
|<   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105  
106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   >>   >|  
gential direction, or around the stick in direction of the annual rings of growth, do the two forces coincide. Another factor to the same end is that the denser bands of late wood are continuous in a tangential direction, while radially they are separated by alternate zones of less dense early wood. Consequently the shrinkage along the rings (tangential) is fully twice as much as toward the centre (radial). (See Table XIV.) This explains why some cracks open more and more as drying advances. (See Fig. 27.) Although actual shrinkage in length is small, nevertheless the tendency of the rays to shorten a stick produces strains which are responsible for some of the splitting open of ties, posts, and sawed timbers with box heart. At the very centre of a tree the wood is light and weak, while farther out it becomes denser and stronger. Longitudinal shrinkage is accordingly least at the centre and greater toward the outside, tending to become greatest in the sapwood. When a round or a box-heart timber dries fast it splits radially, and as drying continues the cleft widens partly on account of the greater tangential shrinkage and also because the greater contraction of the outer fibres warps the sections apart. If a small hardwood stem is split while green for a short distance at the end and placed where it can dry out rapidly, the sections will become bow-shaped with the concave sides out. These various facts, taken together, explain why, for example, an oak tie, pole, or log may split open its entire length if drying proceeds rapidly and far enough. Initial stresses in the living trees produce a similar effect when the log is sawn into boards. This is especially so in _Eucalyptus globulus_ and to a less extent with any rapidly grown wood. The use of S-shaped thin steel clamps to prevent large checks and splits is now a common practice in this country with crossties and poles as it has been for a long time in European countries. These devices are driven into the butts of the timbers so as to cross incipient checks and prevent their widening. In place of the regular S-hook another of crimped iron has been devised. (See Fig. 28.) Thin straps of iron with one tapered edge are run between intermeshing cogs and crimped, after which they may be cut off any length desired. The time for driving S-irons of either form is when the cracks first appear. [Illustration: FIG. 28.--Control of season checking by the use of S-irons. _
PREV.   NEXT  
|<   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105  
106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   >>   >|  



Top keywords:

shrinkage

 

tangential

 
length
 

greater

 
drying
 

centre

 

rapidly

 

direction

 

cracks

 

crimped


splits

 
timbers
 

prevent

 

radially

 
checks
 
denser
 
shaped
 

sections

 

clamps

 
Initial

stresses
 

living

 

proceeds

 

produce

 
similar
 
Eucalyptus
 

globulus

 

extent

 

boards

 

effect


entire
 

incipient

 

intermeshing

 

tapered

 

desired

 

Control

 

season

 

checking

 

Illustration

 
driving

straps

 
European
 
countries
 

devices

 

crossties

 
common
 

practice

 
country
 

driven

 
regular