FREE BOOKS

Author's List




PREV.   NEXT  
|<   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40  
41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   >>   >|  
the mercury reaches some easily recognized division. At this point the broken thread is rejoined to the mercury column from the bulb, and a microscopic bubble of gas is condensed which generally suffices to determine the subsequent breaking of the mercury column at the same point of the tube. The bulb is then allowed to cool till the length of the thread above the point of separation is equal to the desired length, when a slight tap suffices to separate the thread. This method is difficult to work with short threads owing to deficient inertia, especially if the tube is very perfectly evacuated. A thread can always be separated by local heating with a small flame, but this is dangerous to the thermometer, it is difficult to adjust the thread exactly to the required length, and the mercury does not run easily past a point of the tube which has been locally heated in this manner. Having separated a thread of the required length, the thermometer is mounted in a horizontal position on a suitable support, preferably with a screw adjustment in the direction of its length. By tilting or tapping the instrument the thread is brought into position corresponding to the steps of the calibration successively, and its length in each position is carefully observed with a pair of reading microscopes fixed at a suitable distance apart. Assuming that the temperature remains constant, the variations of length of the thread are inversely as the variations of cross-section of the tube. If the length of the thread is very nearly equal to one step, and if the tube is nearly uniform, the average of the observed lengths of the thread, taking all the steps throughout the interval, is equal to the length which the thread should have occupied in each position had the bore been uniform throughout and all the divisions equal. The error of each step is therefore found by subtracting the average length from the observed length in each position. Assuming that the ends of the interval itself are correct, the correction to be applied at any point of calibration to reduce the readings to a uniform tube and scale, is found by taking the sum of the errors of the steps up to the point considered with the sign reversed. Table I.--_Calibration by Method of Gay Lussac_. +----------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ | No. of | | | | |
PREV.   NEXT  
|<   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40  
41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   >>   >|  



Top keywords:
thread
 

length

 

position

 

mercury

 

uniform

 
observed
 

thermometer

 
interval
 

difficult

 
required

variations
 

average

 

separated

 

taking

 
calibration
 
suitable
 

Assuming

 

suffices

 

column

 
easily

carefully
 

successively

 

brought

 

microscopes

 
distance
 

constant

 
remains
 

temperature

 

instrument

 

reading


inversely

 
section
 
occupied
 
errors
 
considered
 
reduce
 

readings

 
reversed
 

Lussac

 
Method

Calibration

 

applied

 
tapping
 
lengths
 

divisions

 

correct

 
correction
 

subtracting

 

locally

 

desired