FREE BOOKS

Author's List




PREV.   NEXT  
|<   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140  
141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   >>   >|  
oured to build a bridge between the two domains. We have seen how Rubens showed us calorific rays 60 metres long; on the other hand, MM. Lecher, Bose, and Lampa have succeeded, one after the other, in gradually obtaining oscillations with shorter and shorter periods. There have been produced, and are now being studied, electromagnetic waves of four millimetres; and the gap subsisting in the spectrum between the rays left undetected by sylvine and the radiations of M. Lampa now hardly comprise more than five octaves--that is to say, an interval perceptibly equal to that which separates the rays observed by M. Rubens from the last which are evident to the eye. The analogy then becomes quite close, and in the remaining rays the properties, so to speak, characteristic of the Hertzian waves, begin to appear. For these waves, as we have seen, the most transparent bodies are the most perfect electrical insulators; while bodies still slightly conducting are entirely opaque. The index of refraction of these substances tends in the case of great wave-lengths to become, as the theory anticipates, nearly the square root of the dielectric constant. MM. Rubens and Nichols have even produced with the waves which remain phenomena of electric resonance quite similar to those which an Italian scholar, M. Garbasso, obtained with electric waves. This physicist showed that, if the electric waves are made to impinge on a flat wooden stand, on which are a series of resonators parallel to each other and uniformly arranged, these waves are hardly reflected save in the case where the resonators have the same period as the spark-gap. If the remaining rays are allowed to fall on a glass plate silvered and divided by a diamond fixed on a dividing machine into small rectangles of equal dimensions, there will be observed variations in the reflecting power according to the orientation of the rectangles, under conditions entirely comparable with the experiment of Garbasso. In order that the phenomenon be produced it is necessary that the remaining waves should be previously polarized. This is because, in fact, the mechanism employed to produce the electric oscillations evidently gives out vibrations which occur on a single plane and are subsequently polarized. We cannot therefore entirely assimilate a radiation proceeding from a spark-gap to a ray of natural light. For the synthesis of light to be realized, still other conditions must be comp
PREV.   NEXT  
|<   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140  
141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   >>   >|  



Top keywords:
electric
 

produced

 
Rubens
 

remaining

 
bodies
 

polarized

 

observed

 
rectangles
 

showed

 

Garbasso


conditions
 

oscillations

 

shorter

 

resonators

 

dividing

 
diamond
 

divided

 
silvered
 
impinge
 

wooden


series

 

Italian

 

scholar

 

obtained

 

physicist

 

parallel

 

period

 

allowed

 

uniformly

 

arranged


machine
 

reflected

 

single

 
subsequently
 

vibrations

 

employed

 

produce

 

evidently

 
synthesis
 
realized

natural

 

assimilate

 
radiation
 

proceeding

 

mechanism

 

reflecting

 

orientation

 

variations

 

dimensions

 

similar