FREE BOOKS

Author's List




PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  
conception of light is. For fifteen years it has been common to hear heat spoken of as a mode of molecular motion, and sometimes it has been characterized as _vibratory_, and most persons have received the impression that the vibratory motion was an actual change of position of the molecular in space instead of a _change of form_. Make a ring of wire five or six inches in diameter, and, holding it between the thumb and finger at the twisted ends, pluck it with a finger of the other hand; the ring will vibrate, have three nodes, and will give a good idea of the character of the vibration that constitutes what we call heat. This vibratory motion may have a greater or less amplitude, and the energy of the vibration will be as the square of that amplitude. But the vibrating molecule gives up its energy of vibration to the surrounding ether; that is to say, it loses amplitude precisely as a vibrating tuning fork will lose it. The ether transmits the energy it has received in every direction with the velocity of 186,000 miles per second, whether the amplitude be great or small, and whether the number of vibrations be many or few. It is quite immaterial. The _form_ of this energy which the ether transmits is _undulatory_; that is to say, not unlike that of the wave upon a loose rope when one end of it is shaken by the hand. As every shake of the hand starts a wave in the rope, so will every vibration of a part of the molecule start a wave in the ether. Now we have several methods for measuring the wave lengths in ether, and we also know the velocity of movement. Let v = velocity, l = wave length, and n = number of vibrations per second, then n = v/l, and by calculation the value of n varies within wide limits, say from 1 x 10^{14} to 20 x 10^{14}. But all vibrating bodies are capable of vibrating in several periods, the longest period being called the fundamental, and the remainder, which stand in some simple ratios to the fundamental, are called _harmonics_. Each of these will give to the ether its own particular vibratory movement, so that a single molecule may be constantly giving out rays of many wave lengths precisely as a sounding bell gives out sounds of various pitches at one and the same time. Again, when these undulations in the ether fall upon other molecules the latter may reflect them away or they may absorb them, in which case the absorbing molecules are themselves made to vibrate with increased amplitude, and
PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  



Top keywords:

amplitude

 
vibration
 

vibrating

 
vibratory
 

energy

 

velocity

 
molecule
 

motion

 

movement

 

called


precisely

 
transmits
 

molecules

 

fundamental

 

vibrations

 

number

 

lengths

 
vibrate
 

change

 

received


finger

 

molecular

 

periods

 

capable

 

common

 
longest
 
bodies
 

characterized

 
remainder
 

period


varies
 

calculation

 

limits

 

length

 
spoken
 

harmonics

 

reflect

 

undulations

 
conception
 

increased


absorbing

 
absorb
 

pitches

 

single

 

fifteen

 
ratios
 

constantly

 
giving
 

sounds

 

sounding