FREE BOOKS

Author's List




PREV.   NEXT  
|<   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74  
75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   >>   >|  
tudinally, naturally prolonged it to the end of the leaf. But the originating of varieties in which the variegation did not assume this form, with other considerations, has done much to upset this theory. In the variegated leaved snowberry we have the center and border of the leaf green, separated the one from the other by an isolated white or yellow zone. In the zebra-leaved eulalia and the zebra-leaved juncus, from Japan, we have the variegation of the leaf transversely instead of longitudinally, so that according to the old theory we have the anomaly of a healthy portion of the leaf producing an unhealthy portion, and that again a healthy one, and thus alternately along the whole length of the leaf. When we dissect a leaf in its primal development, we find that its cells contain colorless globules, by botanists called chlorophyl or phyto-color; these undergo changes according as they are acted upon by light, oxygen, or other agents, producing green, yellow, red, and other tints. This chlorophyl only exists in the outer or superficial cells of the parenchyma or cellular tissue of the leaf, and thus differs from starch and other substances produced in the internal cells, from which the light is more or less excluded. It is a fatty or wax-like substance, readily dissolved in alcohol or ether. The primal color of all leaves and flowers is white or a pale yellowish hue, as can readily be seen by cutting open a leaf or flower bud. The seed leaves of the French bean are white when they come out of the earth, but they become green an hour afterward under the influence of bright sunshine. A case is on record where in a certain section, some miles in extent, in this country, about the time of the trees coming into leaf, the sun did not shine for twenty days; the leaves developed to nearly their full size, but were of a pale or whitish color; finally, one forenoon the sun shone out fully, and by the middle of the afternoon the trees were in full summer dress. These facts show that the green color of leaves is due to the action of light. Variegation is sometimes produced independently of the chlorophyl, as in _Begonia argyrostigma_ and _Carduus marianus_, in which it is produced by a layer of air interposed between the epidermis or outer skin of the leaf and the cells beneath; this gives the leaf a bright, silvery appearance. To what, then, are we to ascribe leaf variegation? I think that it is entirely due to diminished root
PREV.   NEXT  
|<   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74  
75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   >>   >|  



Top keywords:

leaves

 
chlorophyl
 

leaved

 
produced
 

variegation

 

portion

 
readily
 

healthy

 

bright

 

primal


producing

 
yellow
 

theory

 

sunshine

 

record

 

section

 

country

 
extent
 

diminished

 

French


flower

 

afterward

 

coming

 

ascribe

 

influence

 
silvery
 
cutting
 

summer

 
afternoon
 

middle


forenoon
 

marianus

 

Carduus

 

independently

 
action
 

Variegation

 

Begonia

 

argyrostigma

 
finally
 

twenty


beneath

 
epidermis
 

interposed

 

whitish

 

developed

 
appearance
 

substances

 
longitudinally
 

transversely

 

eulalia