FREE BOOKS

Author's List




PREV.   NEXT  
|<   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45  
46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   >>   >|  
c weight of closely [1] It seems very difficult at present to suggest an end product for thorium, unless we assume that, by loss of electrons, thorium E, or thorium-lead, reverts to a substance chemically identical with thorium itself. Such a change--whether considered from the point of view of the periodic law or of the radioactive theory would involve many interesting consequences. It is, of course, quite possible that the nature of the conditions attending the deposition of the uranium ores, many of which are comparatively recent, are responsible for the difficulties observed. The thorium and uranium ores are, again, specially prone to alteration. 25 207. By a somewhat similar calculation it is deduced that thorium-derived lead would possess the atomic weight of 208. Thus normal lead might be an admixture of uranium- and thorium-derived lead. However, as we have seen, the view that thorium gives rise to stable lead is beset with some difficulties. If we are going upon reliable facts and figures, we must, then, assume: (a) That some other element than uranium, and genetically connected with it (probably as parent substance), gives rise, or formerly gave rise, to lead of heavier atomic weight than normal lead. It may be observed respecting this theory that there is some support for the view that a parent substance both to uranium and thorium has existed or possibly exists. The evidence is found in the proportionality frequently observed between the amounts of thorium and uranium in the primary rocks.[1] Or: (b) We may meet the difficulties in a simpler way, which may be stated as follows: If we assume that all stable lead is derived from uranium, and at the same time recognise that lead is not perfectly homogeneous in atomic weight, we must, of necessity, ascribe to uranium a similar want of homogeneity; heavy atoms of uranium giving rise to heavy [1] Compare results for the thorium content of such rocks (appearing in a paper by the author Cong. Int. _de Radiologie et d'Electricite_, vol. i., 1910, p. 373), and those for the radium content, as collected in _Phil. Mag._, October, 1912, p. 697. Also A. L. Fletcher, _Phil. Mag._, July, 1910; January, 1911, and June, 1911. J. H. J. Poole, _Phil. Mag._, April, 1915 26 atoms of lead and light atoms of uranium generating light atoms of lead. This assumption seems to be involved in the figures upon, which we are going. Still relying on these figures, we fin
PREV.   NEXT  
|<   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45  
46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   >>   >|  



Top keywords:

thorium

 

uranium

 

weight

 

observed

 

derived

 

difficulties

 
atomic
 

assume

 

figures

 

substance


content

 

similar

 
parent
 

normal

 

stable

 

theory

 

perfectly

 
homogeneous
 
relying
 

generating


assumption

 
involved
 

ascribe

 
recognise
 
necessity
 

primary

 

amounts

 

proportionality

 
frequently
 

stated


simpler

 

Fletcher

 

Electricite

 

radium

 

collected

 

Radiologie

 

Compare

 

results

 

giving

 
October

author

 
January
 

appearing

 

homogeneity

 
reliable
 

interesting

 

consequences

 

involve

 
radioactive
 

periodic