hat is 715 feet. This assumes that there was uniform
deposition of the abstracted matter over the floor of the ocean.
Of course, this assumption is not justifiable. It is certain that
the rate of deposition on the floor of the sea has varied
enormously with various conditions--principally with the depth.
Again, it must be remembered that this estimate takes no account
of solid materials otherwise brought into the oceanic deposits;
_e.g._, by wind-transported dust from the land or volcanic
ejectamenta in the ocean depths. It is not probable, however,
that any considerable addition to the estimated mean depth of
deposit from such sources would be allowable.
49
The greatness of the quantities involved in these determinations
is almost awe inspiring. Take the case of the dissolved salts in
the ocean. They are but a fraction, as we have seen, of the total
results of solvent denudation and represent the integration of
the minute traces contributed by the river water. Yet the common
salt (chloride of sodium) alone, contained in the ocean, would,
if abstracted and spread over the dry land as a layer of rock
salt having a specific gravity of 2.2, cover the whole to a depth
of 107 metres or 354 feet. The total salts in solution in the
ocean similarly spread over the land would increase the depth of
the layer to 460 feet. After considering what this means we have
to remember that this amount of matter now in solution in the
seas is, in point of fact, less than a fifth part of the total
dissolved from the rocks during geological time.
The transport by denudation of detrital and dissolved matter from
the land to the ocean has had a most important influence on the
events of geological history. The existing surface features of
the earth must have been largely conditioned by the dynamical
effects arising therefrom. In dealing with the subject of
mountain genesis we will, elsewhere, see that all the great
mountain ranges have originated in the accumulation of the
detrital sediments near the shore in areas which, in consequence
of the load, gradually became depressed and developed into
synclines of many thousands of feet in depth. The most impressive
surface features of the Globe originated
50
in this manner. We will see too that these events were of a
rhythmic character; the upraising of the mountains involving
intensified mechanical denudation over the elevated area and in
this way an accelerated transport of detritus to
|