FREE BOOKS

Author's List




PREV.   NEXT  
|<   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102  
103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   >>  
line be deuided by chaunce, as it maye happen, the square that is made of the whole line, and one of the partes of it which soeuer it be, shal be equall to that square that is made of the ij. partes ioyned togither, and to an other square made of that part, which was before ioyned with the whole line. _Example._ [Illustration] The line A.B. is deuided in C. into twoo partes, though not equally, of which two partes for an example I take the first, that is A.C, and of it I make one side of a square, as for example D.G. accomptinge those two lines to be equall, the other side of the square is D.E, whiche is equall to the whole line A.B. Now may it appeare, to your eye, that the great square made of the whole line A.B, and of one of his partes that is A.C, (which is equall with D.G.) is equal to two partiall squares, whereof the one is made of the saide greatter portion A.C, in as muche as not only D.G, beynge one of his sides, but also D.H. beinge the other side, are eche of them equall to A.C. The second square is H.E.F.K, in which the one side H.E, is equal to C.B, being the lesser parte of the line, A.B, and E.F. is equall to A.C. which is the greater parte of the same line. So that those two squares D.H.K.G and H.E.F.K, bee bothe of them no more then the greate square D.E.F.G, accordinge to the wordes of the Theoreme afore saide. _The xxxviij. Theoreme._ If a righte line be deuided by chaunce, into partes, the square that is made of that whole line, is equall to both the squares that ar made of eche parte of the line, and moreouer to two squares made of the one portion of the diuided line ioyned with the other in square. [Illustration] _Example._ Lette the diuided line bee A.B, and parted in C, into twoo partes: Nowe saithe the Theoreme, that the square of the whole lyne A.B, is as mouche iuste as the square of A.C, and the square of C.B, eche by it selfe, and more ouer by as muche twise, as A.C. and C.B. ioyned in one square will make. For as you se, the great square D.E.F.G, conteyneth in hym foure lesser squares, of whiche the first and the greatest is N.M.F.K, and is equall to the square of the lyne A.C. The second square is the lest of them all, that is D.H.L.N, and it is equall to the square of the line C.B. Then are there two other longe squares both of one bygnes, that is H.E.N.M. and L.N.G.K, eche of them both hauyng .ij. sides equall to A.C, the longer parte
PREV.   NEXT  
|<   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102  
103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   >>  



Top keywords:

square

 

equall

 
partes
 

squares

 

ioyned

 

Theoreme

 

deuided

 
whiche

diuided

 

lesser

 

portion

 

Illustration

 

Example

 
chaunce
 
righte
 

xxxviij


longer

 
parted
 

bygnes

 

moreouer

 
hauyng
 

conteyneth

 
greatest
 

saithe


mouche

 

partiall

 

accomptinge

 

equally

 

appeare

 
soeuer
 

happen

 

togither


accordinge

 
greate
 

greater

 
greatter
 
whereof
 

beynge

 

beinge

 
wordes