FREE BOOKS

Author's List




PREV.   NEXT  
|<   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106  
107   108   109   110   111   112   113   114   115   116   117   >>  
ng squares (as is before mencioned) and one full square. which is the intent of the Theoreme. _The xliij. Theoreme._ If a right line be deuided into ij. equal partes first, and one of those parts again into other ij. parts, as chaunce hapeneth, the square that is made of the last part of the line so diuided, and the square of the residue of that whole line, are double to the square of halfe that line, and to the square of the middle portion of the same line. _Example._ [Illustration] The line to be deuided is A.B, and is parted in C. into two equall partes, and then C.B, is deuided againe into two partes in D, so that the meaninge of the Theoreme, is that the square of D.B. which is the latter parte of the line, and the square of A.D, which is the residue of the whole line. Those two squares, I say, ar double to the square of one halfe of the line, and to the square of C.D, which is the middle portion of those thre diuisions. Which thing that you maye more easilye perceaue, I haue drawen foure squares, whereof the greatest being marked with E. is the square of A.D. The next, which is marked with G, is the square of halfe the line, that is, of A.C, And the other two little squares marked with F. and H, be both of one bignes, by reason that I did diuide C.B. into two equall partes, so that you amy take the square F, for the square of D.B, and the square H, for the square of C.D. Now I thinke you doubt not, but that the square E. and the square F, ar double so much as the square G. and the square H, which thing the easyer is to be vnderstande, bicause that the greate square hath in his side iij. quarters of the firste line, which multiplied by itselfe maketh nyne quarters, and the square F. containeth but one quarter, so that bothe doo make tenne quarters. Then G. contayneth iiij. quarters, seynge his side containeth twoo, and H. containeth but one quarter, whiche both make but fiue quarters, and that is but halfe of tenne. Whereby you may easylye coniecture, that the meanynge of the theoreme is verified in the figures of this example. _The xliiij. Theoreme._ If a right line be deuided into ij. partes equally, and an other portion of a righte lyne annexed to that firste line, the square of this whole line so compounded, and the square of the portion that is annexed, ar doule as much as the square of the halfe of the firste line, and the square of the ot
PREV.   NEXT  
|<   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106  
107   108   109   110   111   112   113   114   115   116   117   >>  



Top keywords:
square
 

partes

 

quarters

 

portion

 

Theoreme

 
deuided
 

squares

 
marked
 

double

 
containeth

firste
 

equall

 

annexed

 

quarter

 
residue
 
middle
 

itselfe

 

bicause

 

maketh

 
easyer

greate
 

multiplied

 

vnderstande

 

xliiij

 
figures
 

verified

 
theoreme
 

equally

 

compounded

 

righte


meanynge

 
coniecture
 
seynge
 
contayneth
 
whiche
 
easylye
 

thinke

 
Whereby
 

easilye

 
Example

diuided

 

Illustration

 
parted
 
meaninge
 

againe

 

intent

 
mencioned
 

hapeneth

 

chaunce

 

greatest