FREE BOOKS

Author's List




PREV.   NEXT  
|<   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101  
102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   >>  
d to declare that particularly, Fyrst I make an other line G.K, equall to the line .C.D, and the line G.H. to be equal to the line A.B, and to bee diuided into iij. like partes, so that G.M. is equall to A.E, and M.N. equal to E.F, and then muste N.H. nedes remaine equall to F.B. Then of those ij. lines G.K, vndeuided, and G.H. which is deuided, I make a square, that is G.H.K.L, In which square if I drawe crosse lines frome one side to the other, according to the diuisions of the line G.H, then will it appear plaine, that the theoreme doth affirme. For the first square G.M.O.K, must needes be equal to the square of the line C.D, and the first portion of the diuided line, which is A.E, for bicause their sides are equall. And so the seconde square that is M.N.P.O, shall be equall to the square of C.D, and the second part of A.B, that is E.F. Also the third square which is N.H.L.P, must of necessitee be equal to the square of C.D, and F.B, bicause those lines be so coupeled that euery couple are equall in the seuerall figures. And so shal you not only in this example, but in all other finde it true, that if one line be deuided into sondry partes, and an other line whole and vndeuided, matched with him in a square, that square which is made of these two whole lines, is as muche iuste and equally, as all the seuerall squares, whiche bee made of the whole line vndiuided, and euery part seuerally of the diuided line. _The xxxvi. Theoreme._ If a right line be parted into ij. partes, as chaunce may happe, the square that is made of the whole line, is equall to bothe the squares that are made of the same line, and the twoo partes of it seuerally. _Example._ [Illustration] The line propounded beyng A.B. and deuided, as chaunce happeneth, in C. into ij. vnequall partes, I say that the square made of the hole line A.B, is equal to the two squares made of the same line with the twoo partes of itselfe, as with A.C, and with C.B, for the square D.E.F.G. is equal to the two other partial squares of D.H.K.G and H.E.F.K, but that the greater square is equall to the square of the whole line A.B, and the partiall squares equall to the squares of the second partes of the same line ioyned with the whole line, your eye may iudg without muche declaracion, so that I shall not neede to make more exposition therof, but that you may examine it, as you did in the laste Theoreme. _The xxxvij. Theoreme._ If a right
PREV.   NEXT  
|<   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101  
102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   >>  



Top keywords:

square

 

equall

 
partes
 

squares

 

deuided

 

Theoreme

 

diuided

 
bicause
 

chaunce


seuerall

 

seuerally

 

vndeuided

 

declare

 
parted
 
vndiuided
 

whiche

 

happeneth

 
declaracion

exposition

 

xxxvij

 
examine
 

therof

 
ioyned
 

equally

 

vnequall

 

propounded

 

Illustration


partiall

 

greater

 
partial
 

itselfe

 

Example

 

affirme

 
theoreme
 

plaine

 
needes

portion
 

remaine

 

crosse

 
diuisions
 

seconde

 
sondry
 
matched
 

necessitee

 

coupeled


couple

 

figures