FREE BOOKS

Author's List




PREV.   NEXT  
|<   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103  
104   105   106   107   108   109   110   111   112   113   114   115   116   117   >>  
of the diuided line, and there other two sides equall to C.B, beeyng he shorter parte of the said line A.B. So is that greatest square, beeyng made of the hole lyne A.B, equal to the ij. squares of eche of his partes seuerally, and more by as muche iust as .ij. longe squares, made of the longer portion of the diuided lyne ioyned in square with the shorter parte of the same diuided line, as the theoreme wold. And as here I haue put an example of a lyne diuided into .ij. partes, so the theoreme is true of all diuided lines, of what number so euer the partes be, foure, fyue, or syxe. etc. This theoreme hath great vse, not only in geometrie, but also in arithmetike, as herafter I will declare in conuenient place. _The .xxxix. theoreme._ If a right line be deuided into two equall partes, and one of these .ij. partes diuided agayn into two other partes, as happeneth the longe square that is made of the thyrd or later part of that diuided line, with the residue of the same line, and the square of the mydlemoste parte, are bothe togither equall to the square of halfe the firste line. _Example._ [Illustration] The line A.B. is diuided into ij. equal partes in C, and that parte C.B. is diuided agayne as hapneth in D. Wherfore saith the Theorem that the long square made of D.B. and A.D, with the square of C.D. (which is the mydle portion) shall bothe be equall to the square of half the lyne A.B, that is to saye, to the square of A.C, or els of C.D, which make all one. The long square F.G.N.O. whiche is the longe square that the theoreme speaketh of, is made of .ij. long squares, wherof the fyrst is F.G.M.K, and the seconde is K.N.O.M. The square of the myddle portion is L.M.O.P. and the square of the halfe of the fyrste lyne is E.K.Q.L. Nowe by the theoreme, that longe square F.G.M.O, with the iuste square L.M.O.P, muste bee equall to the greate square E.K.Q.L, whyche thynge bycause it seemeth somewhat difficult to vnderstande, althoughe I intende not here to make demonstrations of the Theoremes, bycause it is appoynted to be done in the newe edition of Euclide, yet I wyll shew you brefely how the equalitee of the partes doth stande. And fyrst I say, that where the comparyson of equalitee is made betweene the greate square (whiche is made of halfe the line A.B.) and two other, where of the fyrst is the longe square F.G.N.O, and the second is the full square L.M.O.P, which is one portion of the
PREV.   NEXT  
|<   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103  
104   105   106   107   108   109   110   111   112   113   114   115   116   117   >>  



Top keywords:

square

 

diuided

 
partes
 

theoreme

 

equall

 

portion

 

squares

 
whiche
 

shorter

 

greate


equalitee

 

beeyng

 

bycause

 
fyrste
 
seconde
 

wherof

 

speaketh

 
myddle
 

brefely

 

stande


betweene
 

comparyson

 
Euclide
 

edition

 

difficult

 

vnderstande

 

seemeth

 

thynge

 

whyche

 
althoughe

intende

 

appoynted

 

Theoremes

 
demonstrations
 

firste

 
number
 
longer
 

ioyned

 

greatest

 
geometrie

mydlemoste

 
residue
 
togither
 

seuerally

 

Wherfore

 

hapneth

 

agayne

 
Example
 
Illustration
 

happeneth