FREE BOOKS

Author's List




PREV.   NEXT  
|<   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120  
121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   >>   >|  
b, b than c, c than d, etc. Hence this is not abandonment of experience but a generalization of it, which results in a calculus potentially applicable not only to it but also to other subject-matter of thought. Indeed, if it were not for the possibility of this generalization, the almost unlimited applicability of diagrams, so useful in the classroom, to illustrate everything from the nature of reality to the categorical imperative, as well as to the more technical usages of the psychological and social sciences, would not be understandable. It would be a paradox, however, if starting out from processes of counting and measuring, generalizations had been attained that no longer had significance for counting or measuring, and the non-Euclidian hyper-dimensional geometries seem at first to present this paradox. But, as the outcome of our second line of thought proves, this is not the case. The investigation of the relations of different geometrical systems to each other has shown (cf. Brown, "The Work of H. Poincare," _Journ. of Phil., Psy., and Sci. Meth._, Vol. XI, No. 9, p. 229) that these different systems have a correspondence with one another so that for any theorem stated in one of them there is a corresponding theorem that can be stated in another. In other words, given any factual situation that can be stated in Euclidian geometry, the aspect treated as a straight line in the Euclidian exposition will be treated as a curve in the non-Euclidian, and a situation treated as three-dimensional by Euclid's methods can be treated as of any number of dimensions when the proper fundamental element is chosen, and vice versa, although of course the element will not be the line or plane in our empirical usage of the term. This is what Poincare means by saying that our geometry is a free choice, but not arbitrary (_The Value of Science_, Pt. III, Ch. X, Sec. 3), for there are many limitations imposed by fact upon the choice, and usually there is some clear indication of convenience as to the system chosen, based on the fundamental ideal of simplicity. It is evident, then, that geometry and arithmetic have been drawing closer together, and that to-day the distinction between them is somewhat hard to maintain. The older arithmetic had limited itself largely to the study of the relations involved in serial orders as suggested by counting, whereas geometry had concerned itself primarily with the relations of groups of such se
PREV.   NEXT  
|<   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120  
121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   >>   >|  



Top keywords:

Euclidian

 

geometry

 

treated

 
relations
 
stated
 

counting

 

systems

 

choice

 
generalization
 

paradox


measuring
 

Poincare

 

element

 

situation

 

theorem

 

fundamental

 

chosen

 

dimensional

 
thought
 

arithmetic


closer

 

proper

 

dimensions

 

number

 

drawing

 

empirical

 

methods

 

groups

 

maintain

 

largely


exposition

 

limited

 
aspect
 

straight

 

Euclid

 

distinction

 

primarily

 
suggested
 
convenience
 

system


orders

 
limitations
 

serial

 

involved

 
indication
 
imposed
 

evident

 

concerned

 

simplicity

 

arbitrary