FREE BOOKS

Author's List




PREV.   NEXT  
|<   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143  
144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   >>   >|  
ematics was almost entirely geometrical for accomplishing what a later generation could accomplish by an algebraic theory of functions. As has been pointed out, the undertaking of the ancient mathematical astronomer to resolve the motions of planetary bodies into circular, uniform, continuous, symmetrical movements is comparable to the theorem of Fourier which allows the mathematician to replace any one periodic function by a sum of circular functions. In other words, the astronomy of the Alexandrian period is a somewhat cumbrous development of the mathematical technique of the time to enable the astronomer to bring the anomalies of the planetary bodies, as they increased under observation, within the axioms of a metaphysical physics. The genius exhibited in the development of the mathematical technique places the names of Apollonius of Perga, Hipparchus of Nicaea, and Ptolemy among the great mathematicians of the world, but they never felt themselves free to attack by their hypotheses the fundamental assumptions of the ancient metaphysical doctrine of the universe. Thus it was said of Hipparchus by Adrastus, a philosopher of the first century A. D., in explaining his preference for the epicycle to the eccentric as a means of analyzing the motions of the planetary bodies: "He preferred and adopted the principle of the epicycle as more probable to his mind, because it ordered the system of the heavens with more symmetry and with a more intimate dependence with reference to the center of the universe. Although he guarded himself from assuming the role of the physicist in devoting himself to the investigations of the real movements of the stars, and in undertaking to distinguish between the motions which nature has adopted from those which the appearances present to our eyes, he assumed that every planet revolved along an epicycle, the center of which describes a circumference concentric with the earth." Even mathematical astronomy does not offer an exception to the scientific method of the ancient world, that of bringing to consciousness the concepts involved in their world of experience, organizing these concepts with reference to each, analyzing and restating them within the limits of their essential accidents, and assimilating the concrete objects of experience to these typical forms as more or less complete realizations. At the beginning of the process of Greek self-conscious reflection and analysis, the mind ran rio
PREV.   NEXT  
|<   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143  
144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   >>   >|  



Top keywords:
mathematical
 

ancient

 
motions
 

epicycle

 
planetary
 

bodies

 

metaphysical

 
movements
 

concepts

 

adopted


development
 

technique

 

Hipparchus

 

experience

 

astronomy

 
center
 

analyzing

 
functions
 
universe
 

astronomer


reference

 

circular

 

undertaking

 

guarded

 

nature

 

present

 

principle

 

probable

 

appearances

 

system


physicist
 

devoting

 

intimate

 
dependence
 

assuming

 

symmetry

 

investigations

 

distinguish

 
heavens
 
Although

ordered

 

complete

 
typical
 

objects

 

essential

 

accidents

 

assimilating

 

concrete

 

realizations

 

reflection