FREE BOOKS

Author's List




PREV.   NEXT  
|<   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69  
70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   >>  
e clearances allowed can be gaged by a feeler placed between a ring and the groove wall. Before a test the spindle should be turned slowly around, the feelers being kept in position. By this means any mechanical flaws or irregularities in the groove walls may be detected. [Illustration: FIG. 61] It has sometimes been found that the groove walls, under the combined action of superheated steam and friction, in cases where actual running contact has occurred, have worn very considerably, the wear taking the form of a rapid crumbling away. It is possible, however, that such deterioration may be due solely to the quality of the steel from which the spindle is forged. Good low-percentage carbon-annealed steel ought to withstand considerable friction; at all events the wear under any conditions should be uniform. If the surfaces of both rings and grooves be found in bad condition, they should be re-ground, if not sufficiently worn to warrant skimming up with a tool. As the question of dummy leakage is of very considerable importance during a test, it may not be inadvisable to describe the manner of setting the spindle and cylinder relatively to one another to insure minimum leakage, and the methods of noting their conduct during a prolonged run. In Fig. 62, showing the spindle, B is the thrust (made in halves), the rings O of which fit into the grooved thrust-rings C in the spindle. Two lugs D are cast on each half of the thrust-block. The inside faces of these lugs are machined, and in them fit the ball ends of the levers E, the latter being fulcrumed at F in the thrust-bearing cover. The screws G, working in bushes, also fit into the thrust-bearing cover, and are capable of pushing against the ends of the levers E and thus adjusting the separate halves of the block in opposite directions. [Illustration: FIG. 62] The top half of the turbine cylinder having been lifted off, the spindle is set relatively to the bottom half by means of the lower thrust-block screw G. This screw is then locked in position and the top half of the cover then lowered into place. With this method great care must necessarily be exercised when lowering the top cover; otherwise the brass dummy rings may be damaged. A safer method is to set the dummy rings in the center of the grooves of the spindle, and then to lower the cover, with less possibility of contact. There being usually plenty of side clearance between the blades of a turbine, it
PREV.   NEXT  
|<   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69  
70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   >>  



Top keywords:

spindle

 

thrust

 

groove

 

levers

 
friction
 

contact

 

bearing

 

turbine

 

grooves

 

halves


cylinder
 

leakage

 
position
 
method
 

considerable

 

Illustration

 
showing
 

inside

 
machined
 
grooved

lowering

 

damaged

 

exercised

 

necessarily

 
plenty
 
clearance
 

blades

 

center

 

possibility

 

capable


pushing

 
bushes
 

fulcrumed

 

screws

 

working

 
adjusting
 

separate

 

bottom

 
locked
 

lowered


lifted

 

opposite

 

directions

 
prolonged
 

skimming

 

actual

 

running

 

occurred

 

combined

 

action