FREE BOOKS

Author's List




PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   >>   >|  
moid.* _V WLD_/C_ = total metal contents. [Footnote *: Strictly, the prismoidal formula should be used, but it complicates the study unduly, and for practical purposes the above may be taken as the volume.] The average value of a number of samples is the total metal contents of their respective prismoids, divided by the total tonnage of these prismoids. If we let _W_, _W_1, _V_, _V_1 etc., represent different samples, we have:-- _V(_WLD_/_C_) + _V_1 (_W_1 _L_1 _D_1/_C_) + _V_2 (_W_2 _L_2 _D_2/_C_) --------------------------------------------------------------------- _WLD_/_C_ + _W_1 _L_1 _D_1/_C_ + _W_2 _L_2 _D_2/_C_ = average value. This may be reduced to:-- (_VWLD_) + (_V_1 _W_1 _L_1 _D_1) + (_V_2 _W_2 _L_2 _D_2,), etc. --------------------------------------------------------------- (_WLD_) + (_W_1 _L_1 _D_1) + (_W_2 _L_2 _D_2), etc. As a matter of fact, samples actually represent the value of the outer shell of the block of ore only, and the continuity of the same values through the block is a geological assumption. From the outer shell, all the values can be taken to penetrate equal distances into the block, and therefore _D_, _D_1, _D_2 may be considered as equal and the equation becomes:-- (_VWL_) + (_V_1 _W_1 _L_1) + (_V_2 _W_2 _L_2), etc. --------------------------------------------------- (_WL_) + (_W_1 _L_1) + (_W_2 _L_2), etc. The length of the prismoid base _L_ for any given sample will be a distance equal to one-half the sum of the distances to the two adjacent samples. As a matter of practice, samples are usually taken at regular intervals, and the lengths _L_, _L_1, _L_2 becoming thus equal can in such case be eliminated, and the equation becomes:-- (_VW_) + (_V_1 _W_1) + (_V_2 _W_2), etc. ---------------------------------------- _W_ + _W_1 + _W_2 , etc. The name "assay foot" or "foot value" has been given to the relation _VW_, that is, the assay value multiplied by the width sampled.[*] It is by this method that all samples must be averaged. The same relation obviously can be evolved by using an inch instead of a foot, and in narrow veins the assay inch is generally used. [Footnote *: An error will be found in this method unless the two end samples be halved, but in a long run of samples this may be disregarded.] Where the payable cross-section is divided into more than one sample, the different samples in the section must be averaged by the above form
PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   >>   >|  



Top keywords:

samples

 

matter

 
values
 

method

 

relation

 

averaged

 

section

 
equation
 

sample

 

distances


prismoids

 

contents

 

Footnote

 
divided
 
average
 

represent

 

multiplied

 
Strictly
 

prismoidal

 

formula


sampled
 

eliminated

 
complicates
 

payable

 

halved

 

generally

 

evolved

 

narrow

 

disregarded

 
assumption

geological

 

respective

 

volume

 
number
 

penetrate

 
continuity
 
reduced
 

tonnage

 

considered

 
practice

adjacent

 
lengths
 
intervals
 

regular

 

unduly

 

prismoid

 

length

 
distance
 
practical
 

purposes