FREE BOOKS

Author's List




PREV.   NEXT  
|<   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40  
41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   >>   >|  
ss 60 = 189 But strange to say _also_ Ruthenium (bar) 132 less 60--72 Rhodium 134 less 60--74 Palladium 136 less 60--76 But 72, 74, 76, are Iron, Cobalt and Nickel. So there does probably exist a new group with bars (183), 185, 187, 189, with atomic weights. X=bar 185; atoms 2590, wt. 143.3 Y= 187, 2618, wt. 145.4 Z= 189, 2646, wt. 147.0. They come probably among the rare earths. Probably also Neodymium and Praseodymium are two of them, for their weights are 143.6, 140.5. * * * * * CHAPTER III. THE LATER RESEARCHES. The first difficulty that faced us was the identification of the forms seen on focusing the sight on gases.[2] We could only proceed tentatively. Thus, a very common form in the air had a sort of dumb-bell shape (see Plate I); we examined this, comparing our rough sketches, and counted its atoms; these, divided by 18--the number of ultimate atoms in hydrogen--gave us 23.22 as atomic weight, and this offered the presumption that it was sodium. We then took various substances--common salt, etc.--in which we knew sodium was present, and found the dumb-bell form in all. In other cases, we took small fragments of metals, as iron, tin, zinc, silver, gold; in others, again, pieces of ore, mineral waters, etc., etc., and, for the rarest substances, Mr. Leadbeater visited a mineralogical museum. In all, 57 chemical elements were examined, out of the 78 recognized by modern chemistry. In addition to these, we found 3 chemical waifs: an unrecognized stranger between hydrogen and helium which we named occultum, for purposes of reference, and 2 varieties of one element, which we named kalon and meta-kalon, between xenon and osmium; we also found 4 varieties of 4 recognized elements and prefixed meta to the name of each, and a second form of platinum, that we named Pt. B. Thus we have tabulated in all 65 chemical elements, or chemical atoms, completing three of Sir William Crookes' lemniscates, sufficient for some amount of generalization. [Illustration: PLATE I. SODIUM.] In counting the number of ultimate atoms in a chemical elemental atom, we did not count them throughout, one by one; when, for instance, we counted up the ultimate atoms in sodium, we dictated the number in each convenient group to Mr. Jinarajadasa, and he multiplied out th
PREV.   NEXT  
|<   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40  
41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   >>   >|  



Top keywords:

chemical

 

ultimate

 
number
 

sodium

 

elements

 

common

 

varieties

 

hydrogen

 

substances

 

recognized


examined
 
counted
 
weights
 

atomic

 

addition

 

occultum

 
purposes
 

reference

 

Ruthenium

 

chemistry


helium
 

stranger

 

unrecognized

 

pieces

 

mineral

 

waters

 

silver

 

rarest

 

Palladium

 

Rhodium


museum
 

Leadbeater

 

visited

 

mineralogical

 

modern

 

strange

 

elemental

 

counting

 

SODIUM

 

amount


generalization
 

Illustration

 

Jinarajadasa

 

multiplied

 

convenient

 
dictated
 

instance

 

sufficient

 

platinum

 

prefixed