FREE BOOKS

Author's List




PREV.   NEXT  
|<   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58  
59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   >>   >|  
rical work. He must make a battery for the production of current, a pair of electro-magnets to be acted upon by the current, a switch to control it, and, finally, he must learn how to connect it up so that it may be operated not only from one, but from two or more push buttons. [Illustration: _Fig. 48._ PUSH BUTTON] HOW MADE.--In Fig. 49 is shown an electric bell, as usually constructed, so modified as to show the structure at a glance, with its connections. A is the base, B, B' the binding posts for the wires, C, C the electro-magnets, C' the bracket for holding the magnets, D the armature, E the thin spring which connects the armature with the post F, G the clapper arm, H the bell, I the adjusting screw on the post J, K the wire lead from the binding post B to the first magnet, L the wire which connects the two magnets, M the wire which runs from the second magnet to the post J, and N a wire leading from the armature post to the binding post B'. [Illustration: _Fig. 49._ ELECTRIC BELL] The principle of the electric bell is this: In looking at Fig. 49, you will note that the armature bar D is held against the end of the adjusting screw by the small spring E. When a current is turned on, it passes through the connections and conduits as follows: Wire K to the magnets, wire M to the binding post J, and set screw I, then through the armature to the post F, and from post F to the binding post B'. [Illustration: _Fig. 50._ ARMATURE OF ELECTRIC BELL] ELECTRIC BELL--HOW OPERATED.--The moment a current passes through the magnets (C, C), the core is magnetized, and the result is that the armature (D) is attracted to the magnets, as shown by the dotted lines (O), when the clapper strikes the bell. But when the armature moves over to the magnet, the connection is broken between the screw (I) and armature (D), so that the cores of the magnets are demagnetized and lose their pull, and the spring (E) succeeds in drawing back the armature. This operation of vibrating the armature is repeated with great rapidity, alternately breaking and re-establishing the circuit, by the action of the current. In making the bell, you must observe one thing, the binding posts (B, B') must be insulated from each other, and the post J, or the post F, should also be insulated from the base. For convenience we show the post F insulated, so as to necessitate the use of wire (N) from post (F) to binding post (B'). The foregoing assumes th
PREV.   NEXT  
|<   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58  
59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   >>   >|  



Top keywords:

armature

 

magnets

 

binding

 

current

 

Illustration

 
insulated
 

spring

 

magnet

 

ELECTRIC

 

connections


passes
 

connects

 

clapper

 

adjusting

 

electro

 

electric

 

connection

 
strikes
 

broken

 

demagnetized


ARMATURE

 

OPERATED

 

moment

 

succeeds

 

dotted

 

attracted

 
magnetized
 
result
 

convenience

 
assumes

foregoing

 

necessitate

 

observe

 
making
 

vibrating

 

repeated

 

operation

 

drawing

 
rapidity
 

circuit


action

 

establishing

 

alternately

 

breaking

 

turned

 

holding

 
bracket
 
operated
 

connect

 

structure