FREE BOOKS

Author's List




PREV.   NEXT  
|<   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91  
92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>  
of what is called a choking coil. It is merely a coil of wire, wound upon an iron core, and the current to be choked passes through the coil. To illustrate this, let us take an arc lamp designed to use a 50-volt current. If a current is supplied to it carrying 100 volts, it is obvious that there are 50 volts more than are needed. We must take care of this excess of 50 volts without losing it, as would happen were we to locate a resistance of some kind in the circuit. This result we accomplish by the introduction of the choking coil, which has the effect of absorbing the excessive 50 volts, the action being due to its quality of self-induction, referred to in the foregoing. [Illustration: _Fig. 114._ CHOKING COIL] In Fig. 114, A is the choking coil and B an arc lamp, connected up, in series, with the choking coil. THE TRANSFORMER.--It is more economical to transmit 10,000 volts a long distance than 1,000 volts, because the lower the pressure, or the voltage, the larger must be the conductor to avoid loss. It is for this reason that 500 volts, or more, are used on electric railways. For electric light purposes, where the current goes into dwellings, even this is too high, so a transformer is used to take a high-voltage current from the main line and transform it into a low voltage. This is done by means of two distinct coils of wire, wound upon an iron core. [Illustration: _Fig. 115._ A TRANSFORMER] In Fig. 115 the core is O-shaped, so that a primary winding (A), from the electrical source, can be wound upon one limb, and the secondary winding (B) wound around the other limb. The wires, to supply the lamps, run from the secondary coil. There is no electrical connection between the two coils, but the action from the primary to the secondary coil is solely by induction. When a current passes through the primary coil, the surging movement, heretofore explained, is transmitted to the iron core, and the iron core, in turn, transmits this electrical energy to the secondary coil. HOW THE VOLTAGE IS DETERMINED.--The voltage produced by the secondary coil will depend upon several things, namely, the strength of the magnetism transmitted to it; the rapidity, or periodicity of the current, and the number of turns of wire around the coil. The voltage is dependent upon the length of the winding. But the voltage may also be increased, as well as decreased. If the primary has, we will say, 100 turns of wire, and has 200 vo
PREV.   NEXT  
|<   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91  
92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>  



Top keywords:

current

 

voltage

 

secondary

 

primary

 

choking

 

electrical

 
winding
 

TRANSFORMER

 

passes

 

action


transmitted
 

Illustration

 

induction

 

electric

 

supply

 

source

 

distinct

 

shaped

 
transform
 

transformer


energy

 
rapidity
 

periodicity

 

number

 

dependent

 
magnetism
 

strength

 
things
 

length

 

decreased


increased

 

depend

 

produced

 

solely

 

surging

 

connection

 

movement

 
heretofore
 

VOLTAGE

 

DETERMINED


explained
 
transmits
 

locate

 
resistance
 
happen
 
losing
 

circuit

 

effect

 

absorbing

 

excessive