FREE BOOKS

Author's List




PREV.   NEXT  
|<   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95  
96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>  
e, as with the arc system above explained, one following the other as shown in Fig. 117. [Illustration: _Fig. 119. Incandescent Circuit._] It was discovered, however, that the addition of each successive lamp, so wired, would not give light in proportion to the addition, but at only about one-fourth the illumination, and such a course would, therefore, make electric lighting enormously expensive. This knowledge resulted in an entirely new system of wiring up the lamps in a circuit. This is explained in Fig. 119. In this figure A represents the dynamo, B, B the brushes, C, D the two line wires, E the lamps, and F the short-circuiting wires between the two main conductors C, D. It will be observed that the wires C, D are larger than the cross wires F. The object is to show that the main wires might carry a very heavy amperage, while the small cross wires F require only a few amperes. This is called the _multiple_ circuit, and it is obvious that the entire amperage produced by the dynamo will not be required to pass through each lamp, but, on the other hand, each lamp takes only enough necessary to render the filament incandescent. This invention at once solved the problem of the incandescent system and was called the subdivision of the electric light. By this means the cost was materially reduced, and the wiring up and installation of lights materially simplified. But the divisibility of the light did not, by any means, solve the great problem that has occupied the attention of electricians and experimenters ever since. The great question was and is to preserve the little filament which is heated to incandescence, and from which we get the light. The effort of the current to pass through the small filament meets with such a great resistance that the substance is heated up. If it is made of metal there is a point at which it will fuse, and thus the lamp is destroyed. It was found that carbon, properly treated, would heat to a brilliant white heat without fusing, or melting, so that this material was employed. But now followed another difficulty. As this intense heat consumed the particles of carbon, owing to the presence of oxygen, means were sought to exclude the air. This was finally accomplished by making a bulb of glass, from which the air was exhausted, and as such a globe had no air to support combustion, the filaments were finally made so that they would last a long time before being finally di
PREV.   NEXT  
|<   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95  
96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>  



Top keywords:

filament

 
finally
 
system
 

explained

 
problem
 
dynamo
 
amperage
 

carbon

 

wiring

 

called


circuit
 

electric

 

addition

 

incandescent

 
heated
 
materially
 

preserve

 

question

 

experimenters

 
occupied

current
 

attention

 

effort

 

resistance

 
incandescence
 

substance

 

electricians

 
destroyed
 

exhausted

 
making

sought
 

exclude

 

accomplished

 

support

 

combustion

 
filaments
 

oxygen

 

presence

 

fusing

 
melting

material

 

properly

 

treated

 

brilliant

 
employed
 

consumed

 

particles

 
intense
 

difficulty

 

obvious