FREE BOOKS

Author's List




PREV.   NEXT  
|<   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93  
94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   >>   >|  
nly a formal condition: this is the general caution _not to go beyond the evidence_. An immediate inference ought to contain nothing that is not contained (or formally implied) in the proposition by which it is proved. With respect to quantity in denotation, this caution is embodied in the rule 'not to distribute any term that is not given distributed.' Thus, if there is a predication concerning 'Some S,' or 'Some men,' as in the forms I. and O., we cannot infer anything concerning 'All S.' or 'All men'; and, as we have seen, if a term is given us preindesignate, we are generally to take it as of particular quantity. Similarly, in the case of affirmative propositions, we saw that this rule requires us to assume that their predicates are undistributed. As to the grounds of this maxim, not to go beyond the evidence, not to distribute a term that is given as undistributed, it is one of the things so plain that to try to justify is only to obscure them. Still, we must here state explicitly what Formal Logic assumes to be contained or implied in the evidence afforded by any proposition, such as 'All S is P.' If we remember that in chap. iv. Sec. 7, it was assumed that every term may have a contradictory; and if we bear in mind the principles of Contradiction and Excluded Middle, it will appear that such a proposition as 'All S is P' tells us something not only about the relations of 'S' and 'P,' but also of their relations to 'not-S' and 'not-P'; as, for example, that 'S is not not-P,' and that 'not-P is not-S.' It will be shown in the next chapter how Logicians have developed these implications in series of Immediate Inferences. If it be asked whether it is true that every term, itself significant, has a significant contradictory, and not merely a formal contradictory, generated by force of the word 'not,' it is difficult to give any better answer than was indicated in Sec.Sec. 3-5, without venturing further into Metaphysics. I shall merely say, therefore, that, granting that some such term as 'Universe' or 'Being' may have no significant contradictory, if it stand for 'whatever can be perceived or thought of'; yet every term that stands for less than 'Universe' or 'Being' has, of course, a contradictory which denotes the rest of the universe. And since every argument or train of thought is carried on within a special 'universe of discourse,' or under a certain _suppositio_, we may say that _within the given suppositio e
PREV.   NEXT  
|<   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93  
94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   >>   >|  



Top keywords:

contradictory

 

significant

 

evidence

 
proposition
 
thought
 

formal

 

Universe

 
caution
 

relations

 

distribute


implied

 

quantity

 

universe

 
contained
 

undistributed

 

suppositio

 

generated

 
Inferences
 

Logicians

 
chapter

implications

 
series
 

developed

 

Immediate

 
denotes
 

stands

 

argument

 

discourse

 

special

 

carried


perceived

 

venturing

 

answer

 

granting

 
Metaphysics
 

difficult

 
preindesignate
 
predication
 
generally
 

propositions


requires

 

affirmative

 

Similarly

 
inference
 

general

 

condition

 

denotation

 
embodied
 

distributed

 
respect