FREE BOOKS

Author's List




PREV.   NEXT  
|<   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110  
111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   >>   >|  
d are ruminants_, namely, all the animals between the two ring-fences. Similar inferences may be illustrated from Figs. 3 and 4. And the Contraposition of A. may be verified by Figs. 1 and 2, and the Contraposition of E. by Fig. 4. Lastly, the Inverse of A. is plain from Fig. 1--_Some things that are not hollow-horned are not ruminants_, namely, things that lie outside the outer circle and are neither 'ruminants' nor 'hollow-horned.' And the Inverse of E may be studied in Fig. 4--_Some things that are not-horned beasts are carnivorous_. Notwithstanding the facility and clearness of the demonstrations thus obtained, it may be said that a diagrammatic method, representing denotations, is not properly logical. Fundamentally, the relation asserted (or denied) to exist between the terms of a proposition, is a relation between the terms as determined by their attributes or connotation; whether we take Mill's view, that a proposition asserts that the connotation of the subject is a mark of the connotation of the predicate; or Dr. Venn's view, that things denoted by the subject (as having its connotation) have (or have not) the attribute connoted by the predicate; or, the Conceptualist view, that a judgment is a relation of concepts (that is, of connotations). With a few exceptions artificially framed (such as 'kings now reigning in Europe'), the denotation of a term is never directly and exhaustively known, but consists merely in 'all things that have the connotation.' If the value of logical training depends very much upon our habituating ourselves to construe propositions, and to realise the force of inferences from them, according to the connotation of their terms, we shall do well not to turn too hastily to the circles, but rather to regard them as means of verifying in denotation the conclusions that we have already learnt to recognise as necessary in connotation. Sec. 3. The equational treatment of propositions is closely connected with the diagrammatic. Hamilton thought it a great merit of his plan of quantifying the predicate, that thereby every proposition is reduced to its true form--an equation. According to this doctrine, the proposition _All X is all Y_ (U.) equates X and Y; the proposition _All X is some Y_ (A.) equates X with some part of Y; and similarly with the other affirmatives (Y. and I.). And so far it is easy to follow his meaning: the Xs are identical with some or all the Ys. But, coming to the ne
PREV.   NEXT  
|<   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110  
111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   >>   >|  



Top keywords:

connotation

 

things

 

proposition

 
relation
 
predicate
 

horned

 

ruminants

 
logical
 

inferences

 

diagrammatic


subject

 

equates

 

propositions

 
Inverse
 

Contraposition

 

denotation

 

hollow

 
recognise
 

treatment

 
equational

realise

 
construe
 

habituating

 

verifying

 
conclusions
 

regard

 

hastily

 

circles

 

learnt

 

affirmatives


similarly

 

follow

 

coming

 

identical

 
meaning
 

doctrine

 
quantifying
 
thought
 
connected
 

Hamilton


equation

 

According

 

reduced

 
closely
 

Conceptualist

 

demonstrations

 

obtained

 
clearness
 

facility

 
beasts