FREE BOOKS

Author's List




PREV.   NEXT  
|<   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50  
51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   >>   >|  
S_, and are therefore at right angles to the base _AB_. _AD_ being drawn to _D_ (the distance-point), is at an angle of 45 deg to the base _AB_, and _AC_ is therefore the diagonal of a square. The line 1C is made parallel to _AB_, consequently A1CB is a square in perspective. The line _BC_, therefore, being one side of that square, is equal to _AB_, another side of it. So that to measure a length on a line drawn to the point of sight, such as _BS_, we set out the length required, say _BA_, on the base-line, then from _A_ draw a line to the point of distance, and where it cuts _BS_ at _C_ is the length required. This can be repeated any number of times, say five, so that in this figure _BE_ is five times the length of _AB_. [Illustration: Fig. 31.] RULE 7 All horizontals forming any other angles but the above are drawn to some other points on the horizontal line. If the angle is greater than half a right angle (Fig. 32), as _EBG_, the point is within the point of distance, as at _V"_. If it is less, as _ABV""_, then it is beyond the point of distance, and consequently farther from the point of sight. [Illustration: Fig. 32.] In Fig. 32, the dotted line _BD_, drawn to the point of distance _D_, is at an angle of 45 deg to the base _AG_. It will be seen that the line _BV"_ is at a greater angle to the base than _BD_; it is therefore drawn to a point _V"_, within the point of distance and nearer to the point of sight _S_. On the other hand, the line _BV""_ is at a more acute angle, and is therefore drawn to a point some way beyond the other distance point. _Note._--When this vanishing point is a long way outside the picture, the architects make use of a centrolinead, and the painters fix a long string at the required point, and get their perspective lines by that means, which is very inconvenient. But I will show you later on how you can dispense with this trouble by a very simple means, with equally correct results. RULE 8 Lines which incline upwards have their vanishing points above the horizontal line, and those which incline downwards, below it. In both cases they are on the vertical which passes through the vanishing point (_S_) of their horizontal projections. [Illustration: Fig. 33.] This rule is useful in drawing steps, or roads going uphill and downhill. [Illustration: Fig. 34.] RULE 9 The farther a point is removed from the picture plane the nearer does its perspectiv
PREV.   NEXT  
|<   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50  
51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   >>   >|  



Top keywords:

distance

 
length
 

Illustration

 
vanishing
 

required

 

horizontal

 

square

 

greater


angles

 

points

 

incline

 

picture

 
nearer
 

farther

 

perspective

 

equally


correct
 

upwards

 
simple
 

results

 
inconvenient
 

parallel

 

dispense

 

trouble


uphill

 

downhill

 

perspectiv

 

removed

 

drawing

 

vertical

 

passes

 

projections


centrolinead

 
figure
 
repeated
 

forming

 

horizontals

 
dotted
 

architects

 

measure


string

 

painters

 

number

 

diagonal