FREE BOOKS

Author's List




PREV.   NEXT  
|<   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303  
304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   >>   >|  
Px [mu] dPy / dPy and hence dP[psi] dP[phi] dP[psi] dP[phi] ------- ------- - ------- ------- = 0; dPx dPy dPy dPx this shows that, as functions of x and y, [psi] is a function of [phi] (see the note at the end of part i. of this article, on Jacobian determinants), so that we may write [psi] = F(z, [phi]), from which [sigma] dPF dP[psi] dPF dPF dP[phi] dPF [sigma] dPF ------- = -------; then ------- = --- + ------- ------- = --- + ------- . [mu]Z = --- + [sigma]Z [mu] dP[phi] dPz dPz dP[phi] dPz dPz [mu] dPz dP[psi] dPF or ------- - [sigma]Z = ---; dPz dPz in virtue of [psi](x, y, z) = f(z), and [psi] = F(z, [phi]), the function [phi] can be written in terms of z only, thus dPF/dPz can be written in terms of z only, and what we required to prove is proved. Consider lastly a simple type of differential equation containing _two_ independent variables, say x and y, and one dependent variable z, namely the equation dPz dPz P--- + Q--- = R, dPx dPy where P, Q, R are functions of x, y, z. This is known as Lagrange's linear partial differential equation of the first order. To integrate this, consider first the ordinary differential equations dx/dz = P/R, dy/dz = Q/R, and suppose that two functions u, v, of x, y, z can be determined, independent of one another, such that the equations u = a, v = b, where a, b are arbitrary constants, lead to these ordinary differential equations, namely such that dPu dPu dPu dPv dPv dPv P--- + Q--- = R--- = 0 and P--- + Q--- = R--- = 0. dPx dPy dPz dPx dPy dPz Then if F(x, y, z) = 0 be a relation satisfying the original differential equations, this relation giving rise to dPF dPF dPz dPF dPF dPz dPF dPF dPF --- + --- --- = 0 and --- + --- --- = 0, we have P--- + Q--- = R--- = 0. dPx dPz dPx dPy dPz dPy dPx dPy dPz It follows that the determinant of three rows and columns vanishes whose first row consists of the three quantities dPF/dPx, dPF/dPy, dPF/dPz, whose second row consists of the three quantities dPu/dPx, dPu/dPy, dPu/dPz, whose third row consists similarly of the partial derivat
PREV.   NEXT  
|<   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303  
304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   >>   >|  



Top keywords:

differential

 

equations

 
functions
 

consists

 
equation
 

function

 

independent


relation

 

quantities

 

partial

 

ordinary

 
written
 

satisfying

 

determinants


determined
 
constants
 
arbitrary
 

original

 

article

 
derivat
 
similarly

vanishes

 

columns

 

suppose

 
determinant
 
Jacobian
 

giving

 

variables


dependent

 

variable

 
proved
 

Consider

 

lastly

 

simple

 

virtue


integrate

 

required

 

Lagrange

 

linear