FREE BOOKS

Author's List




PREV.   NEXT  
|<   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295  
296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   >>   >|  
d^2y1 -- = y1------ + [eta]--- and --- = y1------- + 2--- ------ + [eta]-----, dx dx dx dx^2 dx^2 dx dx dx^2 and thus d^2y dy d^2[eta] / dy1 \ d[eta] /d^2y1 dy1 \ --- + P -- + Qy = y1------- + ( 2--- + Py1) ------ + ( ----- + P--- + Qy1)[eta]; dx^2 dx dx^2 \ dx / dx \ dx^2 dx / if then d^2y1 dy1 ---- + P --- + Qy1 = 0, dx^2 dx and z denote d[eta]/dx, the original differential equation becomes dz / dy1 \ y1-- + ( 2--- + Py1)z = R. dx \ dx / From this equation z can be found by the rule given above for the linear equation of the first order, and will involve one arbitrary constant; thence y = y1 [eta] = y1 [int] zdx + Ay1, where A is another arbitrary constant, will be the general solution of the original equation, and, as was to be expected, involves two arbitrary constants. The case of most frequent occurrence is that in which the coefficients P, Q are constants; we consider this case in some detail. If [t]* be a root of the quadratic equation [t]^2 + [t]P + Q = 0, it can be at once seen that a particular integral of the differential equation with zero on the right side is y1 = e^[theta]x. Supposing first the roots of the quadratic equation to be different, and [phi] to be the other root, so that [p] + [t] = -P, the auxiliary differential equation for z, referred to above, becomes dz/dx + ([t] - [p])z = Re^(-[t]^x), which leads to ze^{([t]-[p])^x} = B + [int] Re^(-[p]^x)dx, where B is an arbitrary constant, and hence to (*) [t] = [theta]; [p] = [phi]. _ _ _ / / / y = Ae^([t]^x) + e^([t]^x)| Be^([p]-[t])^x dx + e^[t]^x | e^([p]-[t])^x | Re^-[p]^x dxdx, _/ _/ _/ or say to y = Ae^[t]^x + Ce^[p]^x + U, where A, C are arbitrary constants and U is a function of x, not present at all when R = 0. If the quadratic equation [t]^2 + P[t] + Q = 0 has equal roots, so that 2[t] = -P, the auxiliary equation in z becomes dz/dx = Re^-[t]^x, giving z = B + [int] Re^-[t]^x dx, where B is an arbitrary constant, and hence _ _
PREV.   NEXT  
|<   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295  
296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   >>   >|  



Top keywords:

equation

 

arbitrary

 

constant

 

quadratic

 
constants

differential
 

original

 

auxiliary

 

Supposing

 

giving


present

 

referred

 

function

 

general

 

solution


involves

 

expected

 
linear
 

involve

 

detail


integral
 
frequent
 

occurrence

 

denote

 

coefficients