FREE BOOKS

Author's List




PREV.   NEXT  
|<   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51  
52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   >>   >|  
ine representing the centre of a cylinder is termed its axis; thus, in Figure 53, dot _d_ represents the centre of the circle, and line _b b_ the axial line of the cylinder. To draw a circle that shall pass through any three given points: Let A B and C in Figure 54 be the points through which the circumference of a circle is to pass. Draw line D connecting A to C, and line E connecting B to C. Bisect D in F and E in G. From F as a centre draw the semicircle O, and from G as a centre draw the semicircle P; these two semicircles meeting the two ends of the respective lines D E. From B as a centre draw arc H, and from C the arc I, bisecting P in J. From A as a centre draw arc K, and from C the arc L, bisecting the semicircle O in M. Draw a line passing through M and F, and a line passing through J and Q, and where these two lines intersect, as at Q, is the centre of a circle R that will pass through all three of the points A B and C. [Illustration: Fig. 54.] [Illustration: Fig. 55.] To find the centre from which an arc of a circle has been struck: Let A A in Figure 55 be the arc whose centre is to be found. From the extreme ends of the arc bisect it in B. From end A draw the arc C, and from B the arc D. Then from the end A draw arc G, and from B the arc F. Draw line H passing through the two points of intersections of arcs C D, and line I passing through the two points of intersection of F G, and where H and I meet, as at J, is the centre from which the arc was drawn. A degree of a circle is the 1/360 part of its circumference. The whole circumference is supposed to be divided into 360 equal divisions, which are called the degrees of a circle; but, as one-half of the circle is simply a repetition of the other half, it is not necessary for mechanical purposes to deal with more than one-half, as is done in Figure 56. As the whole circle contains 360 degrees, half of it will contain one-half of that number, or 180; a quarter will contain 90, and an eighth will contain 45 degrees. In the protractors (as the instruments having the degrees of a circle marked on them are termed) made for sale the edges of the half-circle are marked off into degrees and half-degrees; but it is sufficient for the purpose of this explanation to divide off one quarter by lines 10 degrees apart, and the other by lines 5 degrees apart. The diameter of the circle obviously makes no difference in the number of decrees contained in any portion of
PREV.   NEXT  
|<   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51  
52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   >>   >|  



Top keywords:

circle

 
centre
 
degrees
 

points

 
Figure
 
passing
 
semicircle
 

circumference

 

quarter


marked

 
number
 

Illustration

 

connecting

 

cylinder

 
bisecting
 
termed
 

protractors

 

eighth


instruments

 
diameter
 
portion
 

contained

 

decrees

 

difference

 
representing
 

purposes

 

sufficient


divide
 

explanation

 
purpose
 
simply
 

struck

 

extreme

 

intersections

 

bisect

 
meeting

respective

 

semicircles

 

intersect

 
Bisect
 

intersection

 

represents

 

called

 

repetition

 
divisions

degree

 

divided

 
supposed
 

mechanical