FREE BOOKS

Author's List




PREV.   NEXT  
|<   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53  
54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   >>   >|  
e circle, will not divide the circle without having the last division either too long or too short, in which case the circle may be divided as follows: The compasses set to its radius, or half its diameter, will divide the circle into 6 equal divisions, and each of these divisions will contain 60 degrees of angle, because 360 (the number of degrees in the whole circle) /6 (the number of divisions) = 60, the number of degrees in each division. We may, therefore, subdivide as many of the divisions as are necessary for the two lines whose degrees of angle are to be found. Thus, in Figure 59, are two lines, C, D, and it is required to find their angle one to the other. The circle is divided into six divisions, marked respectively from 1 to 6, the division being made from the intersection of line C with the circle. As both lines fall within less than a division, we subdivide that division as by arcs _a_, _b_, which divide it into three equal divisions, of which the lines occupy one division. Hence, it is clear that they are at an angle of 20 degrees, because twenty is one-third of sixty. When the number of degrees of angle between two lines is less than 90, the lines are said to form an acute angle one to the other, but when they are at more than 90 degrees of angle they are said to form an obtuse angle. Thus, in Figure 60, A and C are at an acute angle, while B and C are at an obtuse angle. F and G form an acute angle one to the other, as also do G and B, while H and A are at an obtuse angle. Between I and J there are 90 degrees of angle; hence they form neither an acute nor an obtuse angle, but what is termed a right-angle, or an angle of 90 degrees. E and B are at an obtuse angle. Thus it will be perceived that it is the amount of inclination of one line to another that determines its angle, irrespective of the positions of the lines, with respect to the circle. [Illustration: Fig. 60.] TRIANGLES. A right-angled triangle is one in which two of the sides are at a right angle one to the other. Figure 61 represents a right-angled triangle, A and B forming a right angle. The side opposite, as C, is called the hypothenuse. The other sides, A and B, are called respectively the base and the perpendicular. [Illustration: Fig. 61.] [Illustration: Fig. 62.] [Illustration: Fig. 63.] [Illustration: Fig. 64.] An acute-angled triangle has all its angles acute, as in Figure 63. An obtuse-angled triangle has one obt
PREV.   NEXT  
|<   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53  
54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   >>   >|  



Top keywords:

degrees

 
circle
 

obtuse

 
divisions
 

division

 

Illustration

 

angled


triangle

 

number

 

Figure

 

divide

 

subdivide

 
called
 

divided


Between

 

angles

 
amount
 

respect

 
TRIANGLES
 

perpendicular

 
positions

irrespective

 

represents

 

opposite

 

forming

 

hypothenuse

 

determines

 

termed


inclination

 

perceived

 

diameter

 

radius

 

compasses

 
occupy
 
twenty

marked

 

required

 
intersection