FREE BOOKS

Author's List




PREV.   NEXT  
|<   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139  
140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   >>   >|  
ed so as to gradually cut off the light, and the observer notes the appearance of the mirror surface. If the curves are perfect and spherical, the transition from complete illumination to darkness will be abrupt, and no part of the mirror will remain illuminated after the rest. For astronomical purposes a parabolic mirror is required. In this case the disc may be partially screened by zonal screens, and the position of the image for different zones noted; the correctness or otherwise of the curvature may then be ascertained by calculation. A shorter way is to place the source just outside the focus, to be found by trial, and then, moving the extinction screen (now a separate appliance) to, say, five times the radius of curvature away, where the image should now appear, the suddenness of extinction may be investigated. This, of course, involves a corresponding modification of the apparatus. Whether the tests indicate that a deepening of the Centre, i.e. increase of the curvature, or a flattening of the edges is required, at least two remedial processes are available. The "chisel and mallet" method of altering the size of the pitch, squares of the polisher may be employed, or paper or small pitch tools may be used to deepen the centre. The "chisel and mallet" method merely consists in removing pitch squares from a uniformly divided tool surface by means of the instruments mentioned. This removal is effected at those points at which the abrasion requires to be reduced. When some practice is attained, I understand that it is usual to try for a parabolic form at once, as soon as the polishing commences. This is done by dividing the pitch surface by V-shaped grooves, the sides of the grooves being radii of the circular surface, so that the central parts of the mirror get most of the polishing action. If paper tools are used they must not be allowed much overhang, or the edges of the mirror betray the effects of paper elasticity. Most operators "sink" the middle, but the late Mr. Lassell, a most accomplished worker, always attained the parabolic form by reducing the curvature of the edges of a spherical mirror. Sec. 72. Preparation of Flat Surfaces. As Sir H. Grubb has pointed out, this operation only differs from those previously described in that an additional condition has to be satisfied. This condition refers to the mean curvature, which must be exact (in the case of flats it is of course zero) to
PREV.   NEXT  
|<   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139  
140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   >>   >|  



Top keywords:

mirror

 

curvature

 

surface

 

parabolic

 

spherical

 

condition

 

attained

 

polishing

 

required

 

grooves


squares

 

mallet

 

method

 

chisel

 

extinction

 

shaped

 

dividing

 

commences

 
abrasion
 

requires


points

 
effected
 

mentioned

 

removal

 

instruments

 

reduced

 

understand

 

uniformly

 

practice

 
divided

elasticity
 

pointed

 

Surfaces

 

Preparation

 
operation
 
refers
 
satisfied
 

additional

 
differs
 

previously


reducing

 

allowed

 

overhang

 

betray

 

action

 

circular

 

central

 

effects

 

removing

 

Lassell