FREE BOOKS

Author's List




PREV.   NEXT  
|<   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156  
157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   >>   >|  
This is easily done by holding the string in the blow-pipe flame and allowing it to fuse down. Twisting the fused part has a good effect in assisting the operation. It is desirable to use a large jet and as powerful a flame as can be obtained during this part of the operation. The final result should be a rod, say two or three inches long and one-eighth of an inch thick, which will in most cases contain a large number of air bubbles. Since the presence of drawn-out bubbles cannot be advantageous, it is often desirable to get rid of them, and this can conveniently be done at the present stage. The process at best is rather tedious; it consists in drawing the quartz down very fine before an intense flame, in order to allow the bubbles to get close enough to the surface to burst. A considerable loss of material invariably occurs during the process; for whenever the thin rod separates into two bits the process of flame-drawing of threads goes on, and entails a certain waste; moreover, the quartz in fine filaments is probably partially volatilised. Sooner or later, however, a sufficient length of bubble-free quartz can be obtained. It must not be supposed that it is always necessary to eliminate bubbles as perfectly as is contemplated in the foregoing description of the treatment, but for special purposes it may be essential to do so, and in any case the reader's attention is directed to a possible source of error. It may be mentioned in connection with this matter that crystals of quartz may look perfectly white and clear, and yet contain impurity. For instance, traces of sodium are generally present, and lithium was found in large spectroscopic quantity in five out of six samples of the purest crystals in my laboratory. The presence of lithium in rock crystal has also been detected by Tegetmeier (Vied. Ann, xli. p. 19, 1890). After some practice in preparing rods and freeing them of bubbles the operator will notice a distinct difference in the fusibility of the samples of quartz he investigates, though all may appear equally pure to the unaided eye. It should be mentioned, however, that high infusibility cannot always be taken as a test of purity, for the most infusible, or rather most viscous, sample examined by the writer contained more lithium than some less viscous samples. Fig. 65. During the process of freeing the quartz from bubbles the lithium and sodium will be found to burn away, or a
PREV.   NEXT  
|<   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156  
157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   >>   >|  



Top keywords:

quartz

 

bubbles

 

lithium

 

process

 

samples

 

crystals

 

presence

 

freeing

 

sodium

 

present


mentioned

 

operation

 

perfectly

 

desirable

 

obtained

 

drawing

 

viscous

 

laboratory

 
crystal
 

purest


spectroscopic

 
quantity
 

matter

 

directed

 

source

 

attention

 

reader

 

connection

 

instance

 
traces

impurity
 

generally

 

notice

 

purity

 
infusible
 
sample
 
infusibility
 

unaided

 
examined
 

writer


During

 

contained

 

equally

 

practice

 

detected

 

Tegetmeier

 

preparing

 

investigates

 

fusibility

 

difference