FREE BOOKS

Author's List




PREV.   NEXT  
|<   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153  
154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   >>   >|  
forms of suspension when employed for any kind of torsion balance, from an ordinary more or less "astatic" galvanometer to the Cavendish apparatus. In the first place the actual strength of the fibres under longitudinal stress is remarkably high, ranging from fifty to seventy tons weight per square inch of section, and even more than this in the case of very fine threads; the second and more important point in favour of quartz depends on the wide limits within which cylindrical threads of this material obey the simplest possible law of torsion, i.e. the law that for a given thread carrying a given weight at a given temperature and having one end clamped, the twist about the axis of figure produced by a turning moment applied at the free end is proportional simply to the moment of the twisting forces, and is independent of the previous history of the thread. It is to be noted, however, that the torsional resilience of quartz as tested by the above law is not so perfect but that our instrumental means allow us to detect its imperfections, and thus to satisfy ourselves that threads made of quartz are not things standing apart from all other materials, except in the sense that the limits within which they may be twisted without deviating in their behaviour from the law of strict proportionality by more than some unassigned small quantity, are phenomenally wide. A torsion balance--if we except the case of certain spiral springs--is almost always called upon for information as to the magnitude of very small forces, and for this purpose it is not essential merely that some law of twisting should be exactly obeyed, but also that the resistance to twisting of the suspension should be small. Now, regarded merely as a substance possessing elastic rigidity, quartz is markedly inferior to the majority of materials, for it is very stiff indeed; its utility depends as much as anything upon its great strength, for this allows us to, use threads of exceeding fineness. In addition to this it must be possible, and moreover readily possible, to obtain threads of uniform section over a sufficient length, or the rate of twist per unit length of the thread will vary in practice from point to point, so that the limits of allowable twist averaged over the whole thread may not be exceeded, and yet they may be greatly overpassed at particular points of the thread. It is interesting to note that in the case of quartz we not only hav
PREV.   NEXT  
|<   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153  
154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   >>   >|  



Top keywords:

threads

 

thread

 

quartz

 

torsion

 

twisting

 

limits

 

balance

 

suspension

 

moment

 

depends


section

 

strength

 

materials

 

forces

 

length

 

weight

 

purpose

 

magnitude

 
obeyed
 

essential


strict

 
proportionality
 

unassigned

 

behaviour

 

twisted

 

deviating

 

quantity

 

phenomenally

 

called

 
springs

spiral
 

information

 

practice

 

allowable

 
averaged
 
obtain
 
uniform
 

sufficient

 
exceeded
 

interesting


points

 

greatly

 

overpassed

 

readily

 

rigidity

 

markedly

 

inferior

 

majority

 

elastic

 

possessing