FREE BOOKS

Author's List




PREV.   NEXT  
|<   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190  
191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   >>   >|  
ith great accuracy. Let it swing for 10,000 oscillations, and measure the time that these oscillations have consumed. The arc through which the pendulum swings may not have remained quite constant, but this does not appreciably affect the _time_ of its oscillation. Suppose that an error of a second is made in the determination of the time of 10,000 oscillations; this will only entail an error of the ten-thousandth part of the second in the time of a single oscillation, and will afford a correspondingly accurate determination of the force of gravity at the place where the experiment was made. Take a pendulum to the equator. Let it perform 10,000 oscillations, and determine carefully the _time_ that these oscillations have required. Bring the same pendulum to another part of the earth, and repeat the experiment. We have thus a means of comparing the gravitation at the two places. There are, no doubt, a multitude of precautions to be observed which need not here concern us. It is not necessary to enter into details as to the manner in which the motion of the pendulum is to be sustained, nor as to the effect of changes of temperature in the alteration of its length. It will suffice for us to see how the time of the pendulum's swing can be measured accurately, and how from that measurement the intensity of gravitation can be calculated. The pendulum thus enables us to make a gravitational survey of the surface of the earth with the highest degree of accuracy. We cannot, however, infer that gravity alone affects the oscillations of the pendulum. We have seen how the earth rotates on its axis, and we have attributed the bulging of the earth at the equator to this influence. But the centrifugal force arising from the rotation has the effect of decreasing the apparent weight of bodies, and the change is greatest at the equator, and lessens gradually as we approach the poles. From this cause alone the attraction of the pendulum at the equator is less than elsewhere, and therefore the oscillations of the pendulum will take a longer time there than at other localities. A part of the apparent change in gravitation is accordingly due to the centrifugal force; but there is, in addition, a real alteration. In a work on astronomy it does not come within our scope to enter into further detail on the subject of our planet. The surface of the earth, its contour and its oceans, its mountain chains and its rivers, are for the physical
PREV.   NEXT  
|<   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190  
191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   >>   >|  



Top keywords:

pendulum

 

oscillations

 

equator

 

gravitation

 

centrifugal

 

gravity

 

experiment

 

effect

 
change
 
apparent

alteration

 

accuracy

 
oscillation
 

surface

 

determination

 

highest

 

decreasing

 
weight
 

bodies

 
rotates

degree

 
bulging
 

arising

 

attributed

 

rotation

 

influence

 

affects

 

astronomy

 

detail

 

subject


chains
 

rivers

 
physical
 

mountain

 

oceans

 

planet

 

contour

 

addition

 

attraction

 

approach


lessens

 

gradually

 

survey

 

localities

 

longer

 

greatest

 
length
 

perform

 

accurate

 

measure