FREE BOOKS

Author's List




PREV.   NEXT  
|<   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185  
186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   >>   >|  
l rotating, commences to pass from the liquid to the solid state. The form which the earth would assume on consolidation would, no doubt, be very irregular on the surface; it would be irregular in consequence of the upheavals and the outbursts incident to the transformation of so mighty a mass of matter; but irregular though it be, we can be sure that, on the whole, the form of the earth's surface would coincide with the shape which it had assumed by the movement of rotation. Hence we can explain the protuberant form of the equator of the earth, and we can appeal to that form in corroboration of the view that this globe was once in a soft or molten condition. The argument may be supported and illustrated by comparing the shape of our earth with the shapes of some of the other celestial bodies. The sun, for instance, seems to be almost a perfect globe. No measures that we can make show that the polar diameter of the sun is shorter than the equatorial diameter. But this is what we might have expected. No doubt the sun is rotating on its axis, and, as it is the rotation that causes the protuberance, why should not the rotation have deformed the sun like the earth? The probability is that a difference really does exist between the two diameters of the sun, but that the difference is too small for us to measure. It is impossible not to connect this with the _slowness_ of the sun's rotation. The sun takes twenty-five days to complete a rotation, and the protuberance appropriate to so low a velocity is not appreciable. On the other hand, when we look at one of the quickly-rotating planets, we obtain a very different result. Let us take the very striking instance which is presented in the great planet Jupiter. Viewed in the telescope, Jupiter is at once seen not to be a globe. The difference is so conspicuous that accurate measures are not necessary to show that the polar diameter of Jupiter is shorter than the equatorial diameter. The departure of Jupiter from the truly spherical shape is indeed much greater than the departure of the earth. It is impossible not to connect this with the much more rapid rotation of Jupiter. We shall presently have to devote a chapter to the consideration of this splendid orb. We may, however, so far anticipate what we shall then say as to state that the time of Jupiter's rotation is under ten hours, and this notwithstanding the fact that Jupiter is more than one thousand times greater than t
PREV.   NEXT  
|<   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185  
186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   >>   >|  



Top keywords:

rotation

 

Jupiter

 

diameter

 

rotating

 

difference

 

irregular

 

measures

 

instance

 
shorter
 
impossible

connect

 

departure

 
equatorial
 

greater

 

protuberance

 

surface

 

result

 
striking
 

presented

 
telescope

Viewed

 
planet
 

planets

 

velocity

 

appreciable

 

complete

 

quickly

 

conspicuous

 

outbursts

 

incident


obtain
 

anticipate

 
thousand
 

notwithstanding

 

splendid

 

spherical

 

upheavals

 

twenty

 

consequence

 

assume


chapter

 

consideration

 

devote

 

presently

 

accurate

 

transformation

 
explain
 

celestial

 

bodies

 

perfect