FREE BOOKS

Author's List




PREV.   NEXT  
|<   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178  
179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   >>   >|  
le the funnel is still to be seen. We thus learn how the sea is curved at every part, and therefore it is natural to suppose that the earth is a sphere. When we make more careful measurements we find that the globe is not perfectly round. It is flattened to some extent at each of the poles. This may be easily illustrated by an indiarubber ball, which can be compressed on two opposite sides so as to bulge out at the centre. The earth is similarly flattened at the poles, and bulged out at the equator. The divergence of the earth from the truly globular form is, however, not very great, and would not be noticed without very careful measurements. The determination of the size of the earth involves operations of no little delicacy. Very much skill and very much labour have been devoted to the work, and the dimensions of the earth are known with a high degree of accuracy, though perhaps not with all the precision that we may ultimately hope to attain. The scientific importance of an accurate measurement of the earth can hardly be over-estimated. The radius of the earth is itself the unit in which many other astronomical magnitudes are expressed. For example, when observations are made with the view of finding the distance of the moon, the observations, when discussed and reduced, tell us that the distance of the moon is equal to fifty-nine times the equatorial radius of the earth. If we want to find the distance of the moon in miles, we require to know the number of miles in the earth's radius. A level part of the earth's surface having been chosen, a line a few miles long is measured. This is called the base, and as all the subsequent measures depend ultimately on the base, it is necessary that this measurement shall be made with scrupulous accuracy. To measure a line four or five miles long with such precision as to exclude any errors greater than a few inches demands the most minute precautions. We do not now enter upon a description of the operations that are necessary. It is a most laborious piece of work, and many ponderous volumes have been devoted to the discussion of the results. But when a few base lines have been obtained in different places on the earth's surface, the measuring rods are to be laid aside, and the subsequent task of the survey of the earth is to be conducted by the measurement of angles from one station to another and trigonometrical calculations based thereon. Starting from a base line a few m
PREV.   NEXT  
|<   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178  
179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   >>   >|  



Top keywords:

radius

 

measurement

 

distance

 

surface

 

accuracy

 

precision

 

ultimately

 

observations

 
operations
 
flattened

devoted

 

careful

 
measurements
 

subsequent

 

called

 

measures

 

depend

 
equatorial
 

require

 
chosen

number

 
measured
 

minute

 

measuring

 

places

 

results

 

obtained

 

survey

 

conducted

 

thereon


Starting
 

calculations

 
trigonometrical
 

angles

 

station

 

discussion

 

volumes

 

exclude

 

errors

 

greater


measure

 

inches

 

demands

 

description

 

laborious

 

ponderous

 
precautions
 

scrupulous

 

indiarubber

 

compressed