FREE BOOKS

Author's List




PREV.   NEXT  
|<   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131  
132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   >>   >|  
till be the same, provided only that the masses remain unaltered. In this we observe a profound difference between the attraction of gravitation and magnetic attraction. In the latter case the attraction is not perceptible at all in the great majority of substances, and is only considerable in the case of iron. In our account of the solar system we have represented the moon as revolving around the earth in a _nearly_ circular path, and the planets as revolving around the sun in orbits which are also approximately circular. It is now our duty to give a more minute description of these remarkable paths; and, instead of dismissing them as being _nearly_ circles, we must ascertain precisely in what respects they differ therefrom. If a planet revolved around the sun in a truly circular path, of which the sun was always at the centre, it is then obvious that the distance from the sun to the planet, being always equal to the radius of the circle, must be of constant magnitude. Now, there can be no doubt that the distance from the sun to each planet is approximately constant; but when accurate observations are made, it becomes clear that the distance is not absolutely so. The variations in distance may amount to many millions of miles, but, even in extreme cases, the variation in the distance of the planet is only a small fraction--usually a very small fraction--of the total amount of that distance. The circumstances vary in the case of each of the planets. The orbit of the earth itself is such that the distance from the earth to the sun departs but little from its mean value. Venus makes even a closer approach to perfectly circular movement; while, on the other hand, the path of Mars, and much more the path of Mercury, show considerable relative fluctuations in the distance from the planet to the sun. It has often been noticed that many of the great discoveries in science have their origin in the nice observation and explanation of minute departures from some law approximately true. We have in this department of astronomy an excellent illustration of this principle. The orbits of the planets are nearly circles, but they are not exactly circles. Now, why is this? There must be some natural reason. That reason has been ascertained, and it has led to several of the grandest discoveries that the mind of man has ever achieved in the realms of Nature. In the first place, let us see the inferences to be drawn from the fact th
PREV.   NEXT  
|<   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131  
132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   >>   >|  



Top keywords:

distance

 

planet

 

circular

 

circles

 

planets

 

approximately

 

attraction

 

amount

 

discoveries

 

fraction


minute

 

constant

 

orbits

 
reason
 

revolving

 

considerable

 
movement
 
perfectly
 

Mercury

 

Nature


approach

 

departs

 
relative
 

inferences

 

closer

 

astronomy

 

excellent

 

department

 

circumstances

 

natural


illustration

 

principle

 

ascertained

 

noticed

 

science

 

realms

 

achieved

 

grandest

 

explanation

 

departures


observation

 

origin

 

fluctuations

 
represented
 

account

 

system

 

description

 

dismissing

 
ascertain
 
remarkable