FREE BOOKS

Author's List




PREV.   NEXT  
|<   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138  
139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   >>   >|  
rent planets had different periodic times; he also saw that the greater the mean distance of the planet the greater was its periodic time, and he was determined to find out the connection between the two. It was easily found that it would not be true to say that the periodic time is merely proportional to the mean distance. Were this the case, then if one planet had a distance twice as great as another, the periodic time of the former would have been double that of the latter; observation showed, however, that the periodic time of the more distant planet exceeded twice, and was indeed nearly three times, that of the other. By repeated trials, which would have exhausted the patience of one less confident in his own sagacity, and less assured of the accuracy of the observations which he sought to interpret, Kepler at length discovered the true law, and expressed it in the form we have stated. To illustrate the nature of this law, we shall take for comparison the earth and the planet Venus. If we denote the mean distance of the earth from the sun by unity then the mean distance of Venus from the sun is 0.7233. Omitting decimals beyond the first place, we can represent the periodic time of the earth as 365.3 days, and the periodic time of Venus as 224.7 days. Now the law which Kepler asserts is that the square of 365.3 is to the square of 224.7 in the same proportion as unity is to the cube of 0.7233. The reader can easily verify the truth of this identity by actual multiplication. It is, however, to be remembered that, as only four figures have been retained in the expressions of the periodic times, so only four figures are to be considered significant in making the calculations. The most striking manner of making the verification will be to regard the time of the revolution of Venus as an unknown quantity, and deduce it from the known revolution of the earth and the mean distance of Venus. In this way, by assuming Kepler's law, we deduce the cube of the periodic time by a simple proportion, and the resulting value of 224.7 days can then be obtained. As a matter of fact, in the calculations of astronomy, the distances of the planets are usually ascertained from Kepler's law. The periodic time of the planet is an element which can be measured with great accuracy; and once it is known, then the square of the mean distance, and consequently the mean distance itself, is determined. Such are the three celebrated laws of P
PREV.   NEXT  
|<   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138  
139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   >>   >|  



Top keywords:

periodic

 

distance

 

planet

 

Kepler

 

square

 

accuracy

 

planets

 

determined

 

proportion

 

revolution


deduce

 

calculations

 

making

 
figures
 

greater

 

easily

 
striking
 
considered
 

significant

 

manner


verification

 

unknown

 
regard
 

proportional

 

identity

 

actual

 

verify

 

reader

 

multiplication

 

remembered


retained

 

expressions

 

quantity

 

measured

 

element

 

ascertained

 

celebrated

 

distances

 

astronomy

 

assuming


simple

 

resulting

 

matter

 
obtained
 

connection

 

expressed

 

discovered

 

stated

 
nature
 
illustrate