FREE BOOKS

Author's List




PREV.   NEXT  
|<   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133  
134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   >>   >|  
its stands out as one of the most conspicuous events in the history of astronomy. It may, in fact, be doubted whether any other discovery in the whole range of science has led to results of such far-reaching interest. We must here adventure for a while into the field of science known as geometry, and study therein the nature of that curve which the discovery of Kepler has raised to such unparalleled importance. The subject, no doubt, is a difficult one, and to pursue it with any detail would involve us in many abstruse calculations which would be out of place in this volume; but a general sketch of the subject is indispensable, and we must attempt to render it such justice as may be compatible with our limits. The curve which represents with perfect fidelity the movements of a planet in its revolution around the sun belongs to that well-known group of curves which mathematicians describe as the conic sections. The particular form of conic section which denotes the orbit of a planet is known by the name of the _ellipse_: it is spoken of somewhat less accurately as an oval. The ellipse is a curve which can be readily constructed. There is no simpler method of doing so than that which is familiar to draughtsmen, and which we shall here briefly describe. We represent on the next page (Fig. 37) two pins passing through a sheet of paper. A loop of twine passes over the two pins in the manner here indicated, and is stretched by the point of a pencil. With a little care the pencil can be guided so as to keep the string stretched, and its point will then describe a curve completely round the pins, returning to the point from which it started. We thus produce that celebrated geometrical figure which is called an ellipse. It will be instructive to draw a number of ellipses, varying in each case the circumstances under which they are formed. If, for instance, the pins remain placed as before, while the length of the loop is increased, so that the pencil is farther away from the pins, then it will be observed that the ellipse has lost some of its elongation, and approaches more closely to a circle. On the other hand, if the length of the cord in the loop be lessened, while the pins remain as before, the ellipse will be found more oval, or, as a mathematician would say, its _eccentricity_ is increased. It is also useful to study the changes which the form of the ellipse undergoes when one of the pins is altered, while the len
PREV.   NEXT  
|<   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133  
134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   >>   >|  



Top keywords:

ellipse

 

describe

 

pencil

 

subject

 

remain

 

length

 

increased

 

stretched

 

planet

 

discovery


science

 

history

 

started

 
astronomy
 

completely

 

returning

 
geometrical
 
number
 

ellipses

 

instructive


called

 

celebrated

 
figure
 

produce

 

guided

 

passes

 

manner

 

varying

 

doubted

 

string


circumstances

 

lessened

 

closely

 

circle

 

mathematician

 

altered

 

undergoes

 

eccentricity

 

stands

 

approaches


formed

 

instance

 

passing

 
events
 

elongation

 

observed

 

conspicuous

 

farther

 
attempt
 
render