FREE BOOKS

Author's List




PREV.   NEXT  
|<   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94  
95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   >>   >|  
nto coincidence, and then separated until the apparent length of the shadow of the mountain on the moon is equal to the distance between the lines: we then know the number of revolutions of the micrometer screw which is equivalent to the length of the shadow. The number of miles on the moon which correspond to one revolution of the screw has been previously ascertained by other observations, and hence the length of the shadow can be determined. The elevation of the sun, as it would have appeared to an observer at this point of the moon, at the moment when the measures were being made, is also obtainable, and hence the actual elevation of the mountain can be calculated. By measurements of this kind the altitudes of other lunar objects, such, for example, as the height of the rampart surrounding a circular-walled plane, can be determined. The beauty and interest of the moon as a telescopic object induces us to give to the student a somewhat detailed account of the more remarkable features which it presents. Most of the objects we are to describe can be effectively exhibited with very moderate telescopic power. It is, however, to be remembered that all of them cannot be well seen at one time. The region most distinctly shown is the boundary between light and darkness. The student will, therefore, select for observation such objects as may happen to lie near that boundary at the time when he is observing. 1. _Posidonius._--The diameter of this large crater is nearly 60 miles. Although its surrounding wall is comparatively slender, it is so distinctly marked as to make the object very conspicuous. As so frequently happens in lunar volcanoes, the bottom of the crater is below the level of the surrounding plain, in the present instance to the extent of nearly 2,500 feet. 2. _Linne._--This small crater lies in the Mare Serenitatis. About sixty years ago it was described as being about 6-1/2 miles in diameter, and seems to have been sufficiently conspicuous. In 1866 Schmidt, of Athens, announced that the crater had disappeared. Since then an exceedingly small shallow depression has been visible, but the whole object is now very inconsiderable. This seems to be the most clearly attested case of change in a lunar object. Apparently the walls of the crater have tumbled into the interior and partly filled it up, but many astronomers doubt that a change has really taken place, as Schroeter, a Hanoverian observer at the end of
PREV.   NEXT  
|<   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94  
95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   >>   >|  



Top keywords:

crater

 

object

 

shadow

 

surrounding

 
length
 

objects

 

observer

 
telescopic
 

student

 
conspicuous

determined

 

diameter

 
elevation
 

mountain

 

boundary

 
number
 

change

 
distinctly
 

Although

 

Serenitatis


extent

 

present

 

marked

 
volcanoes
 

frequently

 

slender

 

bottom

 

instance

 

comparatively

 

tumbled


interior

 

partly

 

Apparently

 

attested

 

filled

 

Schroeter

 
Hanoverian
 
astronomers
 
inconsiderable
 

sufficiently


Schmidt
 

Athens

 

shallow

 

depression

 

visible

 

exceedingly

 

Posidonius

 

announced

 

disappeared

 

obtainable