FREE BOOKS

Author's List




PREV.   NEXT  
|<   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368   369   370   371   372   373   374  
375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   394   395   396   397   398   399   >>   >|  
cally undoes whatever is done by the other switches. In the accompanying diagram only two reversing switches are shown and the lights can be independently controlled from four distinct positions. Any number of reversing switches can be placed between the two-way switches A and D to increase the number of places from which the lights could be turned on and off. --Contributed by J. S. Dow, Mayfield, London. ** How to Make an Electric Pendant Switch [310] It is often desired to use a pendant switch for controlling clusters of incandescent lamps. When such a switch is not at hand, a very good substitute can be made by screwing a common fuse plug into a key socket and connecting the socket in series with the lamps to be controlled. In this way you get a safe, reliable, fused switch. --Contributed by C. C. Heyder, Hansford, W. Va. ** Measure [310] Never guess the length of a piece of work--measure it. ** Home-Made Water Motor [311] The small water motor shown in the illustration is constructed in the same manner as a German toy steam turbine. The wheel, which is made of aluminum 1/16 in. thick and 7 in. in diameter, has 24 blades attached to it. The lugs or extensions carrying the rim must be made from the metal of the wheel, therefore a circle 8 in. in diameter must be first described on the aluminum plate, then another circle 7 in. in diameter within the first and then a circle for the base of the blades, 3-1/2 in. in diameter. Twenty-four radial lines at equal distances apart are drawn between the two smaller circles and a 1/4-in. hole drilled at the intersecting points of the radial lines and the innermost circle. Centrally between each pair of radial lines and between the two outer circles, 1/2 by 3/8-in. lugs are marked out and the metal cut away as shown in Fig. 1. A 1/8-in. hole is then drilled in the center of each lug. Each division is separated by cutting down each radial line to the 1/4-in. hole with a hacksaw. Each arm is then given a quarter turn, as shown by the dotted lines in Fig. 2, and the lug bent over at right angles to receive the rim. The rim is made of the same material as the disk and contains twenty-four 1/8 in. holes corresponding to those in the lugs to receive brass bolts 1/4-in. long. The disks PP were taken from the ends of a discarded typewriter platen, but if these cannot be readily obtained, they can be turned from metal or a heavy flat disk used instead.
PREV.   NEXT  
|<   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368   369   370   371   372   373   374  
375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   394   395   396   397   398   399   >>   >|  



Top keywords:

radial

 

circle

 
diameter
 

switches

 
switch
 

aluminum

 

receive

 

socket

 

circles

 

blades


drilled

 
turned
 

number

 

controlled

 
reversing
 
lights
 
Contributed
 

marked

 

innermost

 
Centrally

independently
 

center

 

cutting

 

separated

 
division
 
points
 

accompanying

 

intersecting

 

Twenty

 

controlling


distances
 

positions

 

distinct

 

pendant

 

smaller

 

hacksaw

 

typewriter

 

platen

 

discarded

 
readily

obtained

 
angles
 
dotted
 

quarter

 

desired

 
material
 

twenty

 
Heyder
 

Hansford

 
reliable