FREE BOOKS

Author's List




PREV.   NEXT  
|<   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80  
81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   >>   >|  
nt is marked zero, and the boiling point is marked 100 in the centigrade and 80 in the Reaumur. Each of the 180, 100 or 80 divisions in the respective thermometers is called a degree. Table 3 and appended formulae are useful for converting from one scale to another. In the United States the bulbs of high-grade thermometers are usually made of either Jena 58^{III} borosilicate thermometer glass or Jena 16^{III} glass, the stems being made of ordinary glass. The Jena 16^{III} glass is not suitable for use at temperatures much above 850 degrees Fahrenheit and the harder Jena 59^{III} should be used in thermometers for temperatures higher than this. Below the boiling point, the hydrogen-gas thermometer is the almost universal standard with which mercurial thermometers may be compared, while above this point the nitrogen-gas thermometer is used. In both of these standards the change in temperature is measured by the change in pressure of a constant volume of the gas. In graduating a mercurial thermometer for the Fahrenheit scale, ordinarily a degree is represented as 1/180 part of the volume of the stem between the readings at the melting point of ice and the boiling point of water. For temperatures above the latter, the scale is extended in degrees of the same volume. For very accurate work, however, the thermometer may be graduated to read true-gas-scale temperatures by comparing it with the gas thermometer and marking the temperatures at 25 or 50 degree intervals. Each degree is then 1/25 or 1/50 of the volume of the stem in each interval. Every thermometer, especially if intended for use above the boiling point, should be suitably annealed before it is used. If this is not done, the true melting point and also the "fundamental interval", that is, the interval between the melting and the boiling points, may change considerably. After continued use at the higher temperatures also, the melting point will change, so that the thermometer must be calibrated occasionally to insure accurate readings. TABLE 3 COMPARISON OF THERMOMETER SCALES +---------------+----------+----------+----------+ | |Fahrenheit|Centigrade| Reaumur | +---------------+----------+----------+----------+ |Absolute Zero | -459.64 | -273.13 | -218.50 | | | 0 | -17.78 | -14.22 | | | 10 | -12.22 | -9.78 | | | 20 | -6.67 |
PREV.   NEXT  
|<   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80  
81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   >>   >|  



Top keywords:

thermometer

 

temperatures

 

boiling

 
change
 

degree

 

melting

 

thermometers

 
volume
 

interval

 

Fahrenheit


higher

 

accurate

 
degrees
 

Reaumur

 

marked

 
mercurial
 

readings

 

annealed

 

marking

 

comparing


graduated
 

intervals

 
intended
 

suitably

 

calibrated

 

Absolute

 

Centigrade

 

continued

 
considerably
 

fundamental


points
 

occasionally

 

THERMOMETER

 

SCALES

 
COMPARISON
 

insure

 

nitrogen

 

States

 
borosilicate
 

suitable


ordinary

 

United

 

respective

 

called

 
divisions
 

centigrade

 

appended

 

converting

 
formulae
 

harder