FREE BOOKS

Author's List




PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  
ce have arisen from the foregoing. About 1880 Pasteur first showed that _Bacillus anthracis_ cultivated in chicken broth, with plenty of oxygen and at a temperature of 42-43deg C., lost its virulence after a few "generations," and ceased to kill even the mouse; Toussaint and Chauveau confirmed, and others have extended the observations. More remarkable still, animals inoculated with such "attenuated" bacilli proved to be curiously resistant to the deadly effects of subsequent inoculations of the non-attenuated form. In other words, animals vaccinated with the cultivated bacillus showed immunity from disease when reinoculated with the deadly wild form. The questions as to the causes and nature of the changes in the bacillus and in the host, as to the extent of immunity enjoyed by the latter, &c., are of the greatest interest and importance. These matters, however, and others such as phagocytosis (first described by Metchnikoff in 1884), and the epoch-making discovery of the opsonins of the blood by Wright, do not here concern us (see II. below). [Sidenote: Form and Structure.] MORPHOLOGY.--_Sizes, Forms, Structure, &c._--The Schizomycetes consist of single cells, or of filamentous or other groups of cells, according as the divisions are completed at once or not. While some unicellular forms are less than 1 [micron] (.001 mm.) in diameter, others have cells measuring 4 [micron] or 5 [micron] or even 7 [micron] or 8 [micron], in thickness, while the length may vary from that of the diameter to many times that measurement. In the filamentous forms the individual cells are often difficult to observe until reagents are applied (_e.g._ fig. 14), and the length of the rows of cylindrical cells may be many hundred times greater than the breadth. Similarly, the diameters of flat or spheroidal colonies may vary from a few times to many hundred [Sidenote: Cell-wall.] times that of the individual cells, the divisions of which have produced the colony. The shape of the individual cell (fig. 1) varies from that of a minute sphere to that of a straight, curved, or twisted filament or cylinder, which is not necessarily of the same diameter throughout, and may have flattened, rounded, or even pointed ends. The rule is that the cells divide in one direction only--_i.e._ transverse to the long axis--and therefore produce aggregates of long cylindrical shape; but in rarer cases iso-diametric cells divide in two or three directions, produc
PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  



Top keywords:
micron
 

diameter

 

individual

 

deadly

 
filamentous
 
attenuated
 

showed

 
animals
 

divisions

 

cylindrical


immunity

 

bacillus

 
divide
 

Sidenote

 
Structure
 
hundred
 

cultivated

 

length

 
difficult
 

measurement


unicellular

 

measuring

 

applied

 
reagents
 

observe

 
thickness
 

produced

 

transverse

 

direction

 

rounded


pointed

 

produce

 
directions
 

produc

 

diametric

 

aggregates

 
flattened
 
colony
 

colonies

 

spheroidal


breadth

 

Similarly

 

diameters

 

varies

 
filament
 

cylinder

 
necessarily
 

twisted

 
curved
 

minute