FREE BOOKS

Author's List




PREV.   NEXT  
|<   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43  
44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   >>   >|  
the mother cell-wall having adapted itself to the outline of the spore (fig. 4, F). The ripe spores of Schizomycetes are spherical, ovoid or long-ovoid in shape and extremely minute (_e.g._ those of _Bacillus subtilis_ measure 0.0012 mm. long by 0.0006 mm. broad according to Zopf), highly refractive and colourless (or very dark, probably owing to the high index of refraction and minute size). The membrane may be relatively thick, and even exhibit shells or strata. The germination of the spores has now been observed in several forms with care. The spores are capable of germination at once, or they may be kept for months and even years, and are very resistant against desiccation, heat and cold, &c. In a suitable medium and at a proper temperature the germination is completed in a few hours. The spore swells and elongates and the contents grow forth to a cell like that which produced it, in some cases clearly breaking through the membrane, the remains of which may be seen attached to the young germinal rodlet (figs. 5, 9 and 11); in other cases the surrounding membrane of the spore swells and dissolves. The germinal cell then grows forth into the forms typical for the particular Schizomycete concerned. The conditions for spore-formation differ. Anaerobic species usually require little oxygen, but aerobic species a free supply. Each species has an optimum temperature and many are known to require very special food-media. The systematic interference with these conditions has enabled bacteriologists to induce the development of so-called asporogenous races, in which the formation of spores is indefinitely postponed, changes in vigour, virulence and other properties being also involved, in some cases at any rate. The addition of minute traces of acids, poisons, &c., leads to this change in some forms; high temperature has also been used successfully. [Illustration: FIG. 11.--Stages in the development of spores of _Bacillus ramosus_ (Fraenkel), in the order and at the times given, in a hanging drop culture, under a very high power. The process begins with the formation of brilliant granules (A, B); these increase, and the brilliant substance gradually balls together (C) and forms the spores (D), one in each segment, which soon acquire a membrane and ripen (E). (H. M. W.)] [Sidenote: Classification.] The difficult subject of the classification[4] of bacteria dates from the year 1872, when Cohn published his system, wh
PREV.   NEXT  
|<   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43  
44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   >>   >|  



Top keywords:
spores
 

membrane

 

formation

 

germination

 
species
 
minute
 

temperature

 
development
 

swells

 

brilliant


germinal

 

conditions

 
require
 

Bacillus

 
addition
 
interference
 

induce

 

optimum

 
involved
 

traces


supply

 

bacteriologists

 

poisons

 
postponed
 

called

 
indefinitely
 

change

 

asporogenous

 

vigour

 

systematic


properties

 

enabled

 
special
 

virulence

 

segment

 

acquire

 
classification
 
bacteria
 

subject

 

Sidenote


Classification

 

difficult

 

gradually

 

substance

 
hanging
 

system

 
Fraenkel
 

ramosus

 
successfully
 

Illustration