FREE BOOKS

Author's List




PREV.   NEXT  
|<   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56  
57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   >>   >|  
own protoplasm. If the SH_2 runs short they oxidize the sulphur again to sulphuric acid, which combines with any calcium carbonate present and forms sulphate again. Similarly nascent methane may reduce iron salts, and the black mud in which these bacteria often occur owes its colour to the FeS formed. Beyerinck and Jegunow have shown that some partially anaerobic sulphur bacteria can only exist in strata at a certain depth below the level of quiet waters where SH_2 is being set free below by the bacterial decompositions of vegetable mud and rises to meet the atmospheric oxygen coming down from above, and that this zone of physiological activity rises and falls with the variations of partial pressure of the gases due to the rate of evolution of the SH_2. In the deeper parts of this zone the bacteria absorb the SH_2, and, as they rise, oxidize it and store up the sulphur; then ascending into planes more highly oxygenated, oxidize the sulphur to SO_3. These bacteria therefore employ SH_2 as their respiratory substance, much as higher plants employ carbohydrates--instead of liberating energy as heat by the respiratory combustion of sugars, they do it by oxidizing hydrogen sulphide. Beyerinck has shown that _Spirillum desulphuricans_, a definite anaerobic form, attacks and reduces sulphates, thus undoing the work of the sulphur bacteria as certain de-nitrifying bacteria reverse the operations of nitro-bacteria. Here again, therefore, we have sulphur, taken [v.03 p.0167] into the higher plants as sulphates, built up into proteids, decomposed by putrefactive bacteria and yielding SH_2 which the sulphur bacteria oxidize, the resulting sulphur is then again oxidized to SO_3 and again combined with calcium to gypsum, the cycle being thus complete. [Sidenote: Iron bacteria.] Chalybeate waters, pools in marshes near ironstone, &c, abound in bacteria, some of which belong to the remarkable genera _Crenothrix_, _Cladothrix_ and _Leptothrix_, and contain ferric oxide, _i.e._ rust, in their cell-walls. This iron deposit is not merely mechanical but is due to the physiological activity of the organism which, according to Winogradsky, liberates energy by oxidizing ferrous and ferric oxide in its protoplasm--a view not accepted by H. Molisch. The iron must be in certain soluble conditions, however, and the soluble bicarbonate of the protoxide of chalybeate springs seems most favourable, the hydrocarbonate absorbed by the cells is oxidi
PREV.   NEXT  
|<   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56  
57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   >>   >|  



Top keywords:
bacteria
 

sulphur

 

oxidize

 

anaerobic

 
physiological
 
activity
 

Beyerinck

 
ferric
 

protoplasm

 

waters


oxidizing

 

calcium

 
higher
 

energy

 
soluble
 
plants
 

sulphates

 

respiratory

 
employ
 

resulting


gypsum

 

Sidenote

 

undoing

 
reduces
 

complete

 
combined
 

oxidized

 

proteids

 

Chalybeate

 

decomposed


operations

 

reverse

 
yielding
 

putrefactive

 

nitrifying

 

Cladothrix

 
accepted
 
hydrocarbonate
 

Molisch

 

absorbed


Winogradsky

 

liberates

 

ferrous

 

springs

 
favourable
 

chalybeate

 
protoxide
 

conditions

 
bicarbonate
 

organism