FREE BOOKS

Author's List




PREV.   NEXT  
|<   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63  
64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   >>   >|  
hem and shake them; continue adding water and shaking them till every pebble is covered with a film of water; let any surplus water drain off. Then weigh again; the difference in the two weights will be approximately the weight of the film water that the pebbles can carry. Repeat this with sand and compare the two amounts of water. A striking illustration can be made by taking two slender bottles and placing in them amounts of colored water equal to the amounts of film water held by the pebbles and sand respectively. In the accompanying illustration (Fig. 29), _A_ represents the amount of water that was found necessary to cover the pebbles in tumbler _B_ with a film of moisture. _C_ is the amount that was necessary to cover with a film the particles of sand in _D_. The finer soil has the greater area for film moisture. It has been estimated that the particles of a cubic foot of clay loam have a possible aggregate film surface of three-fourths of an acre. CHAPTER VI LOSS OF SOIL WATER LOSS OF SOIL WATER AND MEANS OF CHECKING THE LOSS We noticed in previous paragraphs that soil might at times have too much water in it for proper ventilation and so check the growth of the roots of the plant. Now is it possible that soil water may be lost or wasted and if so can we check the loss? In the experiment to find out how well the soils would take in the rainfall (page 40) we noticed that the clay soil took in the water very slowly and that on a field of clay soil part of the rain water would be likely to run off over the surface and be lost. Free water may be lost then, by surface wash. We noticed methods of checking this loss, namely, pulverizing the soil with the tillage tools and putting organic matter into it to make it absorb the rain more readily. We noticed that water poured on the sand ran through it very quickly and was apt to be lost by leaching or percolation. This we found could be checked by rolling the soil and by putting organic matter into it to close the pores. We learned that roots take water from the soil for the use of the plant and send it up to the leaves, which in turn send it out into the air, or transpire it, as this process is called. We learned also that the amount transpired is very great. Now water that is pumped up and transpired by the crops we are growing we consider properly used. But when weeds grow with the crop and pump and transpire water we consider this water as los
PREV.   NEXT  
|<   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63  
64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   >>   >|  



Top keywords:
noticed
 

surface

 
amounts
 

pebbles

 
amount
 
matter
 
moisture
 

organic

 

particles

 

putting


learned

 

transpired

 

illustration

 

transpire

 

pumped

 

slowly

 

called

 

rainfall

 

growing

 

properly


poured

 

readily

 

rolling

 

quickly

 
leaching
 
checked
 

absorb

 

checking

 

methods

 

percolation


pulverizing

 
leaves
 
tillage
 

process

 

striking

 

taking

 

compare

 

Repeat

 

approximately

 
weight

slender
 
bottles
 

accompanying

 

placing

 
colored
 

weights

 

pebble

 

shaking

 

adding

 
continue