FREE BOOKS

Author's List




PREV.   NEXT  
|<   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39  
40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   >>   >|  
e purpose of preventing eddies behind the boss of the stern bracket, and to save the resistance of the flat face of the screw boss. The edges of the blades are cast sharp, instead of being rounded at the back, with a small radius, as in the usual practice--the object of the sharp edge being the diminution of the edge resistance. The driving key extends the whole length of the boss, and the tapered shaft fits throughout its length. [Illustration: FIG. 1.] These points of detail have been features of all Admiralty screws for some years. The frictional resistance of screw propellers is always a fruitful source of inefficiency. With a given screw, the loss due to friction may be taken to vary approximately as the square of the speed. This is not to say that the frictional resistance is greater in proportion to the thrust at high than at low speeds. The blades of screws for any speed should be as smooth and clean as possible, but for high speed screws the absolute saving of friction may be considerable with an improvement of the surface. There is no permanent advantage in polishing the blades. No doubt there is some advantage for a little time, and, probably, better results may thereby be secured on trial, but the blades soon become rough, and shell fish and weed appear to grow as rapidly on recently polished blades as on an ordinary surface. These screws are of gun metal. They were fitted to the ships in the condition in which they left the foundry. It appears that within certain limits mere shape of blade does not affect the efficiency of the screw, but, with a given number of blades and a given disk, the possible variations in the form or distribution of a given area are such that different results may be realized. The shapes of the blades of these propellers are shown in Figs. 2, 3, and 4. It will be seen the shapes are not exactly the same for all the screws, but the differences do not call for much remark. [Illustration: FIG. 2., FIG. 3. & FIG. 4.] Fig. 2 shows the blades for the A screw. C and D have the same form. Fig. 3 shows in full lines the blades of the B screw, and, though very narrow at the tips, they, like A, are after the Griffith pattern. The blades of E and F are of a similar shape, as shown in Fig. 4, and approach an oval form rather than the Griffith pattern. The particulars of these propellers would be considered incomplete without some reference to their positions with respect to the hulls. W
PREV.   NEXT  
|<   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39  
40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   >>   >|  



Top keywords:

blades

 

screws

 

resistance

 

propellers

 
Illustration
 

shapes

 

frictional

 

friction

 

length

 

advantage


pattern

 

Griffith

 

results

 
surface
 
condition
 
ordinary
 

polished

 

recently

 

distribution

 

fitted


efficiency

 

limits

 

affect

 
variations
 

foundry

 

number

 
appears
 
approach
 

particulars

 
similar

considered
 

respect

 
positions
 

incomplete

 
reference
 

narrow

 

differences

 
rapidly
 

realized

 

remark


tapered

 
driving
 

extends

 

points

 
fruitful
 

source

 

inefficiency

 

Admiralty

 
detail
 

features