FREE BOOKS

Author's List




PREV.   NEXT  
|<   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44  
45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   >>   >|  
t once meet with the difficulty that the wake in which the screw works has not a uniform motion. Complex, however, as are the motions of the wake, the screw may be assumed to work in a cylinder of water having such a uniform forward velocity as will produce the same effect as the actual wake on the thrust of the screw. It is then readily seen that the real slip is the sum of the apparent slip and the speed of the hypothetical wake. To make this clear, let V be the speed of the ship, Vs the speed of the screw, _i.e._, revolutions x pitch, and V the speed of the wake; then-- Apparent slip = Vs - V. Real slip = Vs - speed of ship with respect to the wake. " = Vs - (V - V) = (Vs - V) + Vw. " = Apparent slip + speed of the wake. If the apparent slip be zero, the real slip is the speed of the wake, and if the apparent slip be negative, the real slip is less than the speed of the wake. The real slip is greater than the apparent slip, and can never be a negative quantity. From Mr. Froude's model experiments, it appears that this speed of wake for the A class of ship amounts to about 10 per cent. of the speed of the A screw. If this value is correct, then the real slip is (10 + 17.6) per cent., or 27.6 per cent. This is shown in Fig. 6, where O is the point of no slip, being 17.64 from the point of real slip. Slips to the right of O are positive apparent slips, slips to the left are negative apparent slips. The vessel F would certainly have a wake with a speed considerably less than that of A's wake. From the model experiments, the wake for F is about one-half that for the A class, or, roughly, 5 per cent. of the speed of the screw. For the ship F, O is the point of no apparent slip, and the real slip is (5 + 11.4) or 16.4 per cent. For E, the point of real slip is approximately the same as for F. For B and D, the positions on the curve would be about the same. The ship B has a higher speed of wake than D, but the screw D has the greater apparent slip. The influence of the number of blades on the scale for the slip has been neglected. If this efficiency curve were applicable to full sized screws propelling actual ships, and if the determination of the wakes were beyond question, then we should have a proof that our screws were at or near the maximum efficiency. But, as we know, from the total propulsive efficiencies, that the screws have high and not widely different efficiencies on these ships, we
PREV.   NEXT  
|<   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44  
45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   >>   >|  



Top keywords:

apparent

 
screws
 

negative

 
greater
 

efficiencies

 

Apparent

 
efficiency
 

experiments

 

uniform


actual

 

higher

 
influence
 

positions

 

blades

 

neglected

 

number

 

motion

 
roughly

considerably

 

motions

 

approximately

 

Complex

 

applicable

 

maximum

 

propulsive

 
widely
 
propelling

difficulty

 
determination
 

question

 
assumed
 

Froude

 

hypothetical

 

readily

 
amounts
 

appears


quantity

 

respect

 
revolutions
 

thrust

 

positive

 
vessel
 

cylinder

 

forward

 

produce


correct
 

effect

 
velocity