FREE BOOKS

Author's List




PREV.   NEXT  
|<   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249  
250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   >>   >|  
ll made on paddle vessels. Have similar coefficients of performance been obtained in the case of screw vessels? _A._--The coefficients of a greater number of screw vessels have been obtained and recorded, but it would occupy too much time to enumerate them here. The coefficient of performance of the Fairy is 464.8; of the Rattler 676.8; and of the Frankfort 792.3. This coefficient, however, refers to nautical and not to statute miles. If reduced to statute miles for the purpose of comparison with the previous experiments, the coefficients will respectively become 703, 1033, and 1212; which indicate that the performance of screw vessels is equal to the performance of paddle vessels, but some of the superiority of the result may be imputed to the superior size of the screw vessels. INFLUENCE OF THE SIZE OF VESSELS UPON THEIR SPEED. 549. _Q._--Will large vessels attain a greater speed than small, supposing each to be furnished with the same proportionate power? _A._--It is well known that large vessels furnished with the same proportionate power, will attain a greater speed than small vessels, as appears from the rule usual in yacht races of allowing a certain part of the distance to be run to vessels which are of inferior size. The velocity attained by a large vessel will be greater than the velocity attained by a small vessel of the same mould and the same proportionate power, in the proportion of the square roots of the linear dimensions of the vessels. A vessel therefore with four times the sectional area and four times the power of a smaller symmetrical vessel, and consequently of twice the length, will have its speed increased in the proportion of the square root of 1 to the square root of 2, or 1.4 times. 550. _Q._--Will you further illustrate this doctrine by an example? _A._--The screw steamer Fairy, if enlarged to three times the size while retaining the same form, would have twenty-seven times the capacity, nine times the sectional area, and nine times the power. The length of such a vessel would be 434 feet; her breadth 63 feet 4-1/2 inches; her draught of water 16-1/2 feet; her area of immersed section 729 square feet; and her nominal power 1080 horses. Now as the lengths of the Fairy and of the new vessel are in the proportion of 1 to 3, the speeds will be in the proportion of the square root of 1 to the square root of 3; or, in other words, the speed of the large vessel will be 1.73 times grea
PREV.   NEXT  
|<   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249  
250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   >>   >|  



Top keywords:

vessels

 

vessel

 
square
 

performance

 
proportion
 

greater

 

proportionate

 

coefficients

 

paddle

 

attain


furnished

 
sectional
 

length

 

velocity

 
attained
 
statute
 
obtained
 

coefficient

 

similar

 
dimensions

linear
 

smaller

 

symmetrical

 

increased

 
illustrate
 
section
 

nominal

 

immersed

 

inches

 

draught


horses
 

speeds

 

lengths

 

breadth

 

enlarged

 

steamer

 

doctrine

 

retaining

 

capacity

 
twenty

experiments

 
enumerate
 
previous
 

result

 

superiority

 
comparison
 

purpose

 
Frankfort
 

Rattler

 
reduced