FREE BOOKS

Author's List




PREV.   NEXT  
|<   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269  
270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   >>   >|  
direction of its axis beneath the surface, without giving motion to the superincumbent water, and the inertia of this superincumbent water must, therefore, be taken into the account. In the experiment upon the Minx, the depth of this superincumbent column was but small. The total amount of the slip was 36.53 per cent.; and there will not be much error in setting down about one half of this as due to the recession of the water in the direction of the vessel's track, and the other half as due to the lateral penetration of the screw blades. 601. _Q._--Is it not important to make the stern of screw vessels very fine, with the view of diminishing the slip, and increasing the speed? _A._--It is most important. The Rifleman, a vessel of 486 tons, had originally engines of 200 horses power, which propelled her at a speed of 8 knots an hour. The Teazer, a vessel of 296 tons, had originally engines of 100 horses power, which propelled her at a speed of 6-1/2 knots an hour. The engines of the Teazer were subsequently transferred to the Rifleman, and new engines of 40 horse power were put into the Teazer. Both vessels were simultaneously sharpened at the stern, and the result was, that the 100 horse engines drove the Rifleman, when sharpened, as fast as she had previously been driven by the 200 horse engines; and the 40 horse engines drove the Teazer, when sharpened, a knot an hour faster than she had previously been driven by the 100 horse engines. The immersion of both vessels was kept unchanged in each case; and the 100 horse engines of the Teazer, when transferred to the Rifleman, drove that vessel, after she had been sharpened, 2 knots an hour faster than they had previously driven a vessel not much more than half the size. These are important facts for every one to be acquainted with who is interested in the success of screw vessels, and who seeks to obtain the maximum of efficiency with the minimum of expense.[1] [1] See Treatise on the Screw Propeller, by John Bourne, C. E. PROPORTIONS OF SCREWS. 602. _Q._--In fixing upon the proportions of a screw proper to propel any given vessel, how would you proceed? _A._--I would first compute the probable resistance of the vessel, and I would be able to find the relative resistances of the screw and hull, and in every case it is advisable to make the screw as large in diameter as possible. The larger the screw is, the greater will be the efficiency of the engine in p
PREV.   NEXT  
|<   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269  
270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   >>   >|  



Top keywords:

engines

 

vessel

 
Teazer
 

sharpened

 
vessels
 

Rifleman

 

driven

 

important

 

previously

 

superincumbent


propelled

 
horses
 

direction

 

originally

 
faster
 
transferred
 
efficiency
 

success

 

obtain

 
expense

advisable
 

minimum

 

diameter

 

larger

 
maximum
 
acquainted
 

engine

 

greater

 

Treatise

 

interested


Propeller
 

fixing

 

proportions

 

SCREWS

 

compute

 

proper

 

propel

 

proceed

 

probable

 
resistances

Bourne

 
resistance
 
PROPORTIONS
 

relative

 

amount

 
diminishing
 

increasing

 
column
 

blades

 
recession