FREE BOOKS

Author's List




PREV.   NEXT  
|<   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270  
271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   >>   >|  
ropelling the vessel; the larger will be the ratio of the pitch to the diameter, which produces a maximum effect; and the smaller will be the length of the screw or the fraction of a convolution to produce a maximum effect. 603. _Q._--Will you illustrate this doctrine by a practical example? _A._--The French screw steamer Pelican was fitted successively with two screws of four blades, but the diameter of the first screw was 98.42 inches, and the diameter of the second 54 inches. If the efficiency of the first screw by represented by 1, that of the second screw will be represented by .823, or, in other words, if the first screw would give a speed of 10 knots, the second would give little more than 8. The most advantageous ratio of pitch to diameter was found to be 2.2 in the case of the large screw, and 1.384 in the case of the small. The fraction of a convolution which was found to be most advantageous was .281 in the case of the large screw, and .450 in the case of the small screw. 604. _Q_--Were screws of four blades found to be more efficient than screws with two? _A_--They were found to have less slip, but not to be more efficient, the increased slip in those of two blades being balanced by the increased friction in those of four. Screws of two blades, to secure a maximum efficiency, must have a finer pitch than screws of four. 605. _Q._--Are the proportions found to be most suitable in the case of the Pelican applicable to the screws of other vessels? _A._--Only to those which have the same relative resistance of screw and hull. Taking the relative resistance to be the area of immersed midship section, divided by the square of the screw's diameter, it will in the case of the Rattler be 380/100 or 3.8. From the experiments made by MM. Bourgois and Moll on the screw steamer Pelican, they have deduced the proportions of screws proper for all other classes of vessels, whether the screws are of two, four, or six blades. 606. _Q._--Will you specify the nature of their deductions? _A._--I will first enumerate those which bear upon screws with two blades. When the relative resistance is 5.5 the ratio of pitch to diameter should be 1.006, and the fraction of the pitch or proportion of one entire convolution should be 0.454. When the relative resistance is 5, the ratio of pitch to diameter should be 1.069, and fraction of pitch 0.428; relative resistance 4.5, pitch 1.135, fraction 0.402; relative resistance 4,
PREV.   NEXT  
|<   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270  
271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   >>   >|  



Top keywords:

screws

 

diameter

 
relative
 

resistance

 
blades
 

fraction

 

maximum

 

Pelican

 

convolution

 

represented


efficiency

 
increased
 

advantageous

 

proportions

 
steamer
 
efficient
 
effect
 

vessels

 

inches

 
midship

section
 

Bourgois

 

immersed

 

experiments

 
Rattler
 
divided
 

square

 

deductions

 

proportion

 

enumerate


entire
 

classes

 

proper

 

deduced

 

nature

 

successively

 

fitted

 

French

 

practical

 
produces

smaller

 
larger
 
vessel
 

ropelling

 

length

 
produce
 

doctrine

 
illustrate
 

secure

 
Screws