FREE BOOKS

Author's List




PREV.   NEXT  
|<   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211  
212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   >>   >|  
em I found to be the largeness of the space left between the valve plates in this class of pumps, and out of which there is nothing to press the air or water which may be lying there. It consequently happens, that if there be the slightest leakage of air into the pump, this air is merely compressed, and not expelled, by the advance of the air pump piston. It expands again to its former bulk on the return of the pump piston, and prevents the water from entering until there is such an accumulation of pressure in the condenser as forces the water into the pump, when the air being expelled by the water, causes a good vacuum to be momentarily formed in the pump when it gorges itself by taking a sudden gulp of water. So soon, however, as the pressure falls in the condenser and some more air leaks into the pump, the former imperfect action recurs and is again redressed in the same violent manner. 465. _Q._--Is this irregular action of the pump the cause of the imperfect vacuum? _A._--It is one cause. Sometimes one end of the pump will alone draw and the other end will be inoperative, although it is equally open to the condenser, and this will chiefly take place at the stuffing box end, where a leakage of air is more likely to occur. I find, however, that even when both ends of the pump are acting equally and there is no leakage of air at all, the vacuum maintained by a double acting horizontal pump with india rubber valves, is not so good as that maintained by a single acting pump of the kind usual in old engines. 466. _Q._--Will you specify more precisely what were the results you obtained? _A._--When the vacuum pan was exhausted by the pumps without any boiling being carried on in the pan, but only a little cold water being let into it, and also into the pumps to enable them to act in their best manner, it was found that whereas with the old pump a vacuum of 114 on the sugar boiler's gauge could be readily obtained, equal to about 29-1/2 inches of mercury, the lowest that could possibly be got with the new horizontal pump was 122 degrees of the sugar boiler's gauge, or 29 inches of mercury, and to get that the engine must not go faster than 10 or 12 strokes per minute. The proper speed of the engine was 75 strokes per minute, but if allowed to go at that speed the vacuum fell to 130 of the sugar maker's gauge, or 28-1/2 inches of mercury. When the steam was let into the worms of the pan so as to boil the water in it,
PREV.   NEXT  
|<   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211  
212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   >>   >|  



Top keywords:

vacuum

 

condenser

 
mercury
 

inches

 
acting
 

leakage

 

action

 

manner

 

boiler

 

maintained


horizontal

 
obtained
 

equally

 

imperfect

 
strokes
 
engine
 
pressure
 

expelled

 

piston

 
minute

carried
 

faster

 

boiling

 

exhausted

 
precisely
 
single
 

engines

 

results

 

possibly

 

lowest


allowed
 

readily

 

proper

 

degrees

 

enable

 

entering

 

prevents

 

return

 

expands

 
gorges

taking

 
formed
 
momentarily
 

accumulation

 

forces

 
advance
 

compressed

 
plates
 

largeness

 
slightest