FREE BOOKS

Author's List




PREV.   NEXT  
|<   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86  
87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>   >|  
an effect which may render the aeroplane unmanageable if the spiral is one of very small radius and the engine is revolving with sufficient speed to produce a material gyroscopic effect. Such gyroscopic effect should, however, slightly _assist_ the pilot to navigate a small spiral if he will remember to (1) make _right-hand_ spirals in the case of a "pusher," (2) make _left-hand_ spirals in the case of a "tractor." The effect will then be to keep the nose up and prevent a nose-dive. I say "slightly" assist because the engine is, of course, throttled down for a spiral descent, and its lesser revolutions will produce a lesser gyroscopic effect. On the other hand, it might be argued that if the aeroplane gets into a "spin," anything tending to depress the nose of the machine is of value, since it is often claimed that the best way to get out of a spin is to put the machine into a nose-dive--the great velocity of the dive rendering the controls more efficient and better enabling the pilot to regain control. It is, however, a very contentious point, and few are able to express opinions based on practice, since pilots indulging in nose-dive spins are either not heard of again or have usually but a hazy recollection of exactly what happened to them. GLIDING DESCENT WITHOUT PROPELLER THRUST.--All aeroplanes are, or should be, designed to assume their correct gliding angle when the power and thrust is cut off. This relieves the pilot of work, worry, and danger should he find himself in a fog or cloud. The pilot, although he may not realize it, maintains the correct attitude of the aeroplane by observing its position relative to the horizon. Flying into a fog or cloud the horizon is lost to view, and he must then rely upon his instruments--(1) the compass for direction; (2) an inclinometer (arched spirit-level) mounted transversely to the longitudinal axis, for lateral stability; and (3) an inclinometer mounted parallel to the longitudinal axis, or the airspeed indicator, which will indicate a nose-down position by increase in air speed, and a tail-down position by decrease in air speed. The pilot is then under the necessity of watching three instruments and manipulating his three controls to keep the instruments indicating longitudinal, lateral, and directional stability. That is a feat beyond the capacity of the ordinary man. If, however, by the simple movement of throttling down the power and thrust, he can be relieved of
PREV.   NEXT  
|<   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86  
87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>   >|  



Top keywords:
effect
 

longitudinal

 

gyroscopic

 
instruments
 

spiral

 

position

 

aeroplane

 

stability

 

lesser

 

thrust


correct

 
controls
 

mounted

 
machine
 
horizon
 

inclinometer

 

lateral

 

spirals

 

assist

 

slightly


engine

 

produce

 

realize

 

designed

 

assume

 
maintains
 

attitude

 

simple

 

relative

 

observing


aeroplanes

 

movement

 
danger
 

gliding

 

relieves

 

relieved

 

throttling

 

airspeed

 

indicator

 

parallel


directional
 
indicating
 

necessity

 

decrease

 

increase

 
manipulating
 

watching

 
ordinary
 
compass
 

transversely