FREE BOOKS

Author's List




PREV.   NEXT  
|<   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89  
90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   >>   >|  
y the stress of compression. The wood between the centre and bottom lines is then in compression; and the nearer the centre of the circle, the greater the strain, and consequently the greater the compression. It then follows that there is neither tension nor compression, _i.e._, no stress, at the centre line, and that the wood immediately surrounding it is under considerably less stress than the wood farther away. This being so, the wood in the centre may be hollowed out without unduly weakening struts and spars. In this way 25 to 33 per cent. is saved in the weight of wood in an aeroplane. The strength of wood is in its fibres, which should, as far as possible, run without break from one end of a strut or spar to the other end. A point to remember is that the outside fibres, being farthest removed from the centre line, are doing by far the greatest work. SHEAR STRESS is such that, when material collapses under it, one part slides over the other. Example: all the locking pins. [Illustration] Some of the bolts are also in shear or "sideways" stress, owing to lugs under their heads and from which wires are taken. Such a wire, exerting a sideways pull upon a bolt, tries to break it in such a way as to make one piece of the bolt slide over the other piece. TORSION.--This is a twisting stress compounded of compression, tension, and shear stresses. Example: the propeller shaft. NATURE OF WOOD UNDER STRESS.--Wood, for its weight, takes the stress of compression far better than any other stress. For instance: a walking-stick of less than 1 lb. in weight will, if kept perfectly straight, probably stand up to a compression stress of a ton or more before crushing; whereas, if the same stick is put under a bending stress, it will probably collapse to a stress of not more than about 50 lb. That is a very great difference, and, since weight is of the greatest importance, the design of an aeroplane is always such as to, as far as possible, keep the various wooden parts of its construction in direct compression. Weight being of such vital importance, and designers all trying to outdo each other in saving weight, it follows that the factor of safety is rather low in an aeroplane. The parts in direct compression will, however, take the stresses safely provided the following conditions are carefully observed. CONDITIONS TO BE OBSERVED: 1. _All the spars and struts must be perfectly straight._ [Illustration] The
PREV.   NEXT  
|<   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89  
90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   >>   >|  



Top keywords:
stress
 

compression

 

weight

 
centre
 

aeroplane

 

fibres

 

sideways

 

straight

 

perfectly

 

direct


importance

 
STRESS
 

Illustration

 
stresses
 
greatest
 

Example

 

tension

 

greater

 

struts

 

crushing


OBSERVED

 

collapse

 

bending

 

nearer

 

instance

 
walking
 

strain

 

circle

 

safety

 

factor


saving

 

conditions

 
carefully
 

provided

 

safely

 

CONDITIONS

 

design

 

bottom

 

difference

 

wooden


designers
 
Weight
 

construction

 

observed

 

farthest

 
removed
 

remember

 
considerably
 
immediately
 

material